Skip to main content
Log in

Design of robust H -controller for energetic boiler plant

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A problem of robust controller design for control of a boiler plant is solved using an H loop-shaping method with constraints imposed on regional pole placement of transfer functions of the closed-loop system, and linear matrix inequalities tools. Requirements to the closed-loop system are formulated both in the form of frequency constraints on singular values of transfer function of the open-loop system, and in the form of pole placement constraints for the transfer function of the closed-loop system as a given region on the complex plane. A reduction of the full-order H -controller obtained in the design procedure is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Design of Control Laws on the Basis of Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.

    Google Scholar 

  2. Besekerskii, V.A. and Popov, E.P., Teoriya system avtomaticheskogo regulirovaniya (Theory of Automatic Regulation Systems), Moscow: Nauka, 1972.

    Google Scholar 

  3. Boichenko, V.A., Kurdyukov, A.P., Timin, V.N., and Tchaikovskii, M.M., Some Design Methods for Reduced-Order and Fixed-Structure Controllers, Upravl. Bol’shimi Sist., 2007, issue 19, pp. 23–126.

  4. Kurdyukov, A.P. and Timin, V.N., H -control of Energetic System in Abnormal Mode. I. Theoretical Foundations of Robust H -controllers Design, Probl. Upravl., 2009, no. 1, pp. 8–17.

  5. Kurdyukov, A.P. and Timin, V.N., H -control of Energetic System in Abnormal Mode. II. Design of Robust Controller for Control of Energetic System, Probl. Upravl., 2009, no. 2, pp. 14–23.

  6. Balas, G., Chiang, R., Packard, A., and Safonov M., Robust Control Toolbox, Natick: The MathWorks, 2006.

    Google Scholar 

  7. Blight, J.D., Dailey, R.L., and Gangsass, D., Practical Control Law Design for Aircraft Using Multivariable Techniques, Int. J. Control, 1994, vol. 59, no. 1, pp. 93–137.

    Article  Google Scholar 

  8. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Philadelphia: SIAM, 1994.

    Google Scholar 

  9. Chilali, M. and Gahinet, P., H Design with Pole Placement Constraints: An LMI Approach, IEEE Trans. Automat. Control, 1996, vol. 41, no. 3, pp. 358–367.

    Article  MATH  MathSciNet  Google Scholar 

  10. Chilali, M., Gahinet, P., and Apkarian, P., Robust Pole Placement in LMI Regions, IEEE Trans. Automat. Control, 1999, vol. 44, no. 12, pp. 2257–2270.

    Article  MATH  MathSciNet  Google Scholar 

  11. Cori, R. and Maffezzoni, C., Practical Optimal Control of a Drum Boiler Power Plant, Automatica, 1984, vol. 20, pp. 163–173.

    Article  MATH  Google Scholar 

  12. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-Space Solutions to Standard H 2 and H Control Problems, IEEE Trans. Automat. Control, 1989, vol. 34, no. 8, pp. 831–847.

    Article  MATH  MathSciNet  Google Scholar 

  13. Doyle, J.C. and Stein, G., Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis, IEEE Trans. Automat. Control, 1981, vol. AC-26, no. 1, pp. 4–16.

    Article  Google Scholar 

  14. Francis, B.A., A Course in H Control Theory, New York: Springer-Verlag, 1987.

    Book  MATH  Google Scholar 

  15. Gahinet, P. and Apkarian, P., A Linear Matrix Inequality Approach to H Control, Int. J. Robust Nonlinear. Control, 1994, vol. 4, pp. 421–448.

    Article  MATH  MathSciNet  Google Scholar 

  16. Khargonekar, P.P. and Rotea, M.A., Mixed H 2 /H Control: A Convex Optimization Approach, IEEE Trans. Automat. Control, 1991, vol. 39, pp. 824–837.

    Article  MathSciNet  Google Scholar 

  17. Kwon, W.H., Kim, S.W., and Park, P.G., On the Multivariable Robust Control of a Boiler-Turbine System, in Proc. IFAC Symp. Power Syst. Power Plant Control, Seoul, Korea, 1989, pp. 219–223.

  18. McFarlane, D.C. and Glover, K., Robust Controller Design Using Normalized Coprime Factorization Description, New York: Springer-Verlag, 1990.

    Book  Google Scholar 

  19. McFarlane, D.C. and Glover, K., A Loop Shaping Design Procedure Using H Synthesis, IEEE Trans. Automat. Control, 1992, vol. 37, no. 6, pp. 759–769.

    Article  MATH  MathSciNet  Google Scholar 

  20. Nemirovskii, A. and Gahinet, P., Interior Point Polynomial Algorithms in Convex Programming: Theory and Applications, SIAM Studies Appl. Math., 1994, vol. 13.

  21. Nesterov, Y. and Nemirovskii, A., The Projective Method for Solving Linear Matrix Inequalities, Math. Programming, Series B, 1997, vol. 77, pp. 163–190.

    Google Scholar 

  22. Pal, B. and Chaudhuri, B., Robust Control in Power Systems, New York: Springer, 2005, pp. 140–150.

    Google Scholar 

  23. Papageorgiou, G., Robust Control System Design: H Loop Shaping and Aerospace Applications, PhD Dissertation, Univ. of Cambridge, 1998.

  24. Pellegrinetti, G. and Bentsman, J., H Controller Design for Boilers, Int. J. Robust Nonlinear Control, 1994, vol. 4, pp. 645–671.

    Article  MATH  MathSciNet  Google Scholar 

  25. Petrovix, T.B., Ivezic, D.D., and Debeljkovic, D.L.J., Robust IMC Controllers for a Solid-Fuel Boiler, Eng. Simulation, 2000, vol. 17, no. 2, pp. 211–224.

    Google Scholar 

  26. Safonov, M.G. and Chiang, R.Y., Schur Method for Balanced Model Reduction, IEEE Trans. Automat. Control, 1989, vol. 34, no. 7, pp. 729–733.

    Article  MATH  MathSciNet  Google Scholar 

  27. Scherer, C., Gahinet, P., and Chilali, M., Multiobjective Output-Feedback Control via LMI Optimization, IEEE Trans. Automat. Control, 1997, vol. 42, pp. 896–911.

    Article  MATH  MathSciNet  Google Scholar 

  28. Skogestad, S. and Postlethwaite, I., Multivariable Feedback Control, London: Wiley, 2001.

    Google Scholar 

  29. Tan, W., Marquez, H.J., and Chen, T., Multivariable Robust Controller Design for Boiler System, IEEE Trans. Automat. Control, 2002, vol. 10, no. 5, pp. 735–742.

    Google Scholar 

  30. Tan, W. and Chen, T., Robust Controller Design and PID Tuning for Multivariable Processes, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.3442.

  31. Vidyasagar, M., A Coprime Factorization Approach, Cambridge: MIT Press, 1985.

    Google Scholar 

  32. Zames, G., Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses, IEEE Trans. Automat. Control, 1981, vol. AC-26, no. 2, pp. 301–320.

    Article  MathSciNet  Google Scholar 

  33. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, New Jersey: Prentice Hall, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Kurdyukov, V.N. Timin, 2009, published in Upravlenie Bol’shimi Sistemami, 2009, No. 25, pp. 179–214.

The work was supported by the Intersectional Program OEMMPU RAS “Problems of Control and Safety in Energetic and Technical Systems,” program no. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurdyukov, A.P., Timin, V.N. Design of robust H -controller for energetic boiler plant. Autom Remote Control 71, 1927–1945 (2010). https://doi.org/10.1134/S0005117910090158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117910090158

Keywords

Navigation