Skip to main content

Identification of the parameters of blood circulation system


A formulation of the problem of parametric identification from measurements of periodic motion was considered using a mathematical model of the blood circulation system. A method for its numerical solution on the basis of the random global search algorithm was proposed. A software realization of the identification procedure as parallel computation processes in the symmetrical multiprocessor computer systems and the distributed computation environment was described. Practical applications were considered using the example of factor analysis of the origins of arterial hypertension and also medical and sport applications, including the noninvasive monitoring of the level of blood hemoglobin and some kinds of stimulants.

This is a preview of subscription content, access via your institution.


  1. Guyton, A.C., Coleman, T.G., Cowley, A.W., Jr., et al., A Systems Analysis Approach to Understanding Long-Range Arterial Blood Pressure Control and Hypertension, Circulat. Res., 1974, vol. 35, pp. 237–255.

    Google Scholar 

  2. Shumakov, V.I., Zimin, N.K., Itkin, G.P., et al., Iskusstvennoe serdtse (Artificial Heart), Leningrad: Nauka, 1988.

    Google Scholar 

  3. Solodyannikov, Yu.V., Elementy matematicheskogo modelirovaniya i identifikatsiya sistemy krovoobrashcheniya (Elements of Mathematical Modeling and Identification of Blood Circulation System), Samara: Samar. Univ., 1994.

    Google Scholar 

  4. Teoreticheskoe issledovanie fiziologicheskikh sistem. Matematicheskoe modelirovanie (Theoretical Study of Physiological Systems. Mathematical Modeling), Amosov, N.M., Ed., Kiev: Naukova Dumka, 1977.

    Google Scholar 

  5. Shumakov, V.I., Novosel’tsev, V.N., Shtengol’d, E.Sh., et al., Modelirovanie fiziologicheskikh sistem organizma (Modeling of Organism’s Physiological Systems), Moscow: Meditsina, 1971.

    Google Scholar 

  6. Novosel’tsev, V.N., Teoriya upravleniya i biosistemy (Control Theory and Biosystems), Moscow: Nauka, 1978.

    Google Scholar 

  7. Itkin, G.P., Development and Study of Heart Prosthesis Control Systems Using Mathematical Modeling, Cand. Sci. (Eng.) Dissertation, Moscow, 1974.

  8. Proshin, A.P. and Solodyannikov, Yu.V., Mathematical Modeling of Blood Circulation System and Its Practical Application, Autom. Remote Control, 2006, no. 2, pp. 329–341.

  9. Proshin, A.P. and Solodyannikov, Yu.V., Modelirovanie i identificatsiya sistemy krovoobrashcheniya (Modeling and Identification of Blood Circulation System), Certificate of Computer Program Registration, no. 2005611059, Rospatent, 2005.

  10. Ostapenko, T.I., Proshin, A.P., and Solodyannikov, Yu.V., Research on Blood Circulation System Identifiability, Autom. Remote Control, 2007, no. 7, pp. 1239–1255.

  11. Neimark, Yu.I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii (Method of Point Maps in the Theory of Nonlinear Oscillations), Moscow: Nauka, 1972.

    Google Scholar 

  12. Ljung, L., System Identification: Theory for the User, Englewood Cliffs: Prentice Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol’zovatelya, Moscow: Nauka, 1991.

    MATH  Google Scholar 

  13. Kleiber, M., Body Size and Metabolism, Hilgardia, 1932, no. 6, pp. 315–353.

  14. Guyton, A.C., Jones, C.E., and Coleman, T.G., Circulatory Physiology. Cardiac Output and Its Regulation, Philadelphia: Saunders, 1973.

    Google Scholar 

  15. West, G.B., Brown, J.H., and Enquist, B.J., A General Model for the Origin of Allometric Scaling Laws in Biology, Science, 1997, no. 276, pp. 122–126.

  16. Savage, V.M., Gillooly, J.F., Woodruff, W.H., et al., The Predominance of Quarter-power Scaling in Biology, Function. Ecology, 2004, no. 18, pp. 257–282.

  17. Heldt, T. and Mark, R.G., Scaling Cardiovascular Parameters for Population Simulation, Comput. Cardiol., 2004, no. 31, pp. 133–136.

  18. Rastrigin, L.A., Adaptatsiya slozhnykh sistem (Adaptation of Complex Systems), Riga: Zinatne, 1981.

    MATH  Google Scholar 

  19. Hansen, P.B., Model Programs for Computational Science: A Programming Methodology for Multicomputers, Concurrency: Practice Experience, 1993, vol. 5, pp. 407–423.

    Article  Google Scholar 

  20. Guyton, A.C., Circulatory Physiology III. Arterial Pressure and Hypertension, Philadelphia: Saunders, 1980.

    Google Scholar 

  21. Socher, L., The Digital Home: Highly Promising, Highly Complex, Ann. Rev. Commun., 2007, vol. 61, pp. 237–244.

    Google Scholar 

  22. Gatzoulis, L. and Iakovidis, I., Wearable and Portable eHealth Systems. Technological Issues and Opportunities for Personalized Care, IEEE Engin. Medicin. Biolog. Magazin., 2007, no. 26(5), pp. 51–56.

  23. Toumaz Sensium-Ultra Low Power Intelligent Sensor Interface and Transceiver Platform,

  24. Lewis, F.L., Wireless Sensor Networks, Smart Environments: Technologies, Protocols, and Applications, Cook, D.J. and Das, S.K., Eds., New York: Wiley, 2004.

    Google Scholar 

  25. Merlin Excalibur—Data Aquisition Paddle,

  26. Nielsen-Kellerman SpeedCoach®XL Rowing Support,

  27. Korsakas, S., Vainoras, A., Miskinis, V., et al., Electrocardiosignals and Motion Signals Telemonitoring and Analysis System for Sportsmen, Comput. Cardiol., 2005, Sept. 25–28, 2005, pp. 363–366.

  28. Baudouin, A. and Hawkins, D., A Biomechanical Review of Factors Affecting Rowing Performance, Br. J. Sport. Med., 2002, no. 36, pp. 396–402.

Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text © A.P. Proshin, Yu.V. Solodyannikov, 2010, published in Avtomatika i Telemekhanika, 2010, No. 8, pp. 134–153.

This work was sponsored by the “Samara-Dialog” Co.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Proshin, A.P., Solodyannikov, Y.V. Identification of the parameters of blood circulation system. Autom Remote Control 71, 1629–1647 (2010).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Wireless Sensor Network
  • Remote Control
  • Cardiac Cycle
  • Periodic Motion
  • Blood Hemoglobin