Abstract
Nonstationary loss queueing system (Erlang model) is considered. We study weak ergodicity, bounds on the rate of convergence, approximations, bounds for limit characteristics.
This is a preview of subscription content, access via your institution.
References
Erlang, A.K., Løsning af nogle Problemer fra Sandsynlighedsregningen af Betydning for de automatiske Telefoncentraler, Elektroteknikeren, 1917, vol. 13, pp. 5–13.
Gnedenko, B.V. and Kovalenko, I.N., Vvedenie v teoriyu massovogo obsluzhivaniya (Introduction to the Queueing Theory), Moscow: Nauka, 1987.
Kijima, M., On the Largest Negative Eigenvalue of the Infinitesimal Generator Associated with M/M/n/n Queues, Oper. Res. Lett., 1990, vol. 9, pp. 59–64.
Zeifman, A.I., Bening, V.E., and Sokolov, I.A., Markovskie tsepi i modeli s nepreryvnym vremenem (Markov Chains and Continuous Time Models), Moscow: ELEKS-KM, 2008.
Fricker, C., Robert, P., and Tibi, D., On the Rate of Convergence of Erlang’s Model, J. Appl. Probab., 1999, vol. 36, pp. 1167–1184.
Stadie, W. and Parthasarathy, P.R., Generating Function Analysis of Some Joint Distributions for Poisson Loss Systems, Queueing Syst., 2000, vol. 34, pp. 183–197.
Voit, M., A Note of the Rate of Convergence to Equilibrium for Erlang’s Model in the Subcritical Case, J. Appl. Probab., 2000, vol. 37, pp. 918–923.
Van Doorn, E.A., Zeifman, A.I., and Panfilova, T.L., Bounds and Asymptotics for the Rate of Convergence of Birth-death Processes, Teor. Veroyatn. Primen., 2009, vol. 54, pp. 18–38.
Van Doorn, E.A. and Zeifman, A.I., On the Speed of Convergence to Stationarity of the Erlang Loss System, Queueing Syst. (submitted to Erlang special issue).
Gnedenko, B.V. and Makarov, I.P., Properties of the Solution to the Loss Problem for Periodic Rates, Diff. Uravn., 1971, vol. 7, pp. 1696–1698.
Gnedenko, B. and Soloviev, A., On the Conditions of the Existence of Final Probabilities for a Markov Process, Math. Oper. Stat., 1973, vol. 4, pp. 379–390.
Gnedenko, D.B., On a Generalization of Erlang Formulae, Zastosow. Mat., 1971, vol. 12, pp. 239–242.
Zeifman, A.I. and Isaacson Dean, L., On Strong Ergodicity for Nonhomogeneous Continuous-Time Markov Chains, Stoch. Proc. Appl., 1994, vol. 50, pp. 263–273.
Zeifman, A.I., Properties of a System with Losses in the Case of Variable Rates, Autom. Remote Control, 1989, no 1, pp. 82–87.
Massey, W.A. and Whitt, W., On Analysis of the Modified Offered-Load Approximation for the Nonstationary Erlang Loss Model, Ann. Appl. Probab., 1994, vol. 4, pp. 1145–1160.
Zeifman, A.I., Some Estimates of the Rate of Convergence for Birth and Death Processes, J. Appl. Probab., 1991, vol. 28, pp. 268–277.
Zeifman, A.I., Upper and Lower Bounds on the Rate of Convergence for Nonhomogeneous Birth and Death Processes, Stoch. Proc. Appl., 1995, vol. 59, pp. 157–173.
Granovsky, B. and Zeifman, A., Nonstationary Queues: Estimation of the Rate of Convergence, Queueing Syst., 2004, vol. 46, pp. 363–388.
Zeifman, A., Leorato, S., Orsingher, E., Satin, Ya., and Shilova, G., Some Universal Limits for Nonhomogeneous Birth and Death Processes, Queueing Syst., 2006, vol. 52, pp. 139–151.
Lozinskii, S.M., Estimation of Error of the Numerical Integration of an Ordinary Differential Equation, Izv. Vyssh. Uchebn. Zaved., Mat., 1958, no. 5, pp. 52–90.
Dahlquist, G., Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Inaugural Dissertation, Univ. of Stockholm, Almqvist & Wiksells Boktryckeri AB, Uppsala, 1958. Reprinted in: Transactions of the Royal Inst. of Technology, no. 130, Stockholm, 1959.
Ström, T., On Logarithmic Norms, SIAM J. Numer. Anal., 1975, vol. 12, pp. 741–753.
Söderlind, G., The Logarithmic Norm. History and Modern Theory, BIT, Numer. Math., 2006, vol. 46, pp. 631–652.
Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions of Differential Equations in Banach Space), Moscow: Nauka, 1970.
Zeifman, A.I., On the Estimation of Probabilities for Birth and Death Processes, J. Appl. Probab., 1995, vol. 32, pp. 623–634.
Tsitsiashvili, G.Sh., Dekompozitsionnye metody v zadachakh ustoichivosti i effektivnosti slozhnykh sistem (Decompositional Methods in the Problems of Stability and Effectiveness of Complex Systems), Vladivostok: Vychisl. Tsentr DVNTs Akad. Nauk SSSR, 1989.
Zeifman, A.I., Stability of Birth-and-death Processes, J. Math. Sci., 1998, vol. 91, pp. 3023–3031.
Zeifman, A.I., On the Error of Reduction of a Birth-and-death System, Zh. Vychisl. Mat. Mat. Fiz., 1988, vol. 28, pp. 1906–1907.
Author information
Authors and Affiliations
Additional information
Original Russian Text © A.I. Zeifman, 2009, published in Avtomatika i Telemekhanika, 2009, No. 12, pp. 71–80.
This work was supported by the Russian Foundation for Basic Research, project no. 09-01-12124.
Rights and permissions
About this article
Cite this article
Zeifman, A.I. On the nonstationary Erlang loss model. Autom Remote Control 70, 2003–2012 (2009). https://doi.org/10.1134/S000511790912008X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S000511790912008X
Keywords
- Remote Control
- Death Process
- Loss System
- Service Intensity
- Convergence Parameter