Advertisement

Automation and Remote Control

, Volume 69, Issue 2, pp 233–246 | Cite as

Minimax a posteriori estimation of the Markov processes with finite state spaces

  • A. V. Borisov
Stochastic Systems

Abstract

Consideration was given to some problems of estimation (filtering and identification) in the observation systems describing the Markov processes with finite state spaces. The transition intensity matrices and the observation plan are random and have unknown distributions of some class. The conditional expectations of the accessible observations of some quadratic functions of the estimate errors are used as the performance criteria. The estimation problems under study lie in constructing estimates minimizing the conditional mean losses corresponding to the least favorable distribution of the “transition intensity matrix-observation plan matrix” pair from the set of permissible distributions. For the corresponding minimax problems, existence of the saddle points was proved, and the form of the corresponding minimax estimates was established.

PACS number

05.40.-a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalman, R.E. and Bucy, R.S., New Results in Linear Filtering and Prediction Problems, Trans. ASME, 1961, Ser. D, vol. 83, pp. 95–111.MathSciNetGoogle Scholar
  2. 2.
    Wonham, W.N., Some Applications of Stochastic Differential Equations to Optimal Nonlinear Filtering, SIAM J. Control, 1965, no. 2, pp. 347–369.Google Scholar
  3. 3.
    Martin, C.J. and Mintz, M., Robust Filtering and Prediction for Linear Systems with Uncertain Dynamics: A Game-Theoretic Approach, IEEE Trans. Automat. Control, 1983, vol. AC-28, no. 9, pp. 888–896.CrossRefGoogle Scholar
  4. 4.
    Anan’ev, B.I., Minimax Linear Filtering of the Multistep Processes with Uncertain Distribution of Perturbations, Avtom. Telemekh., 1993, no. 10, pp. 131–139.Google Scholar
  5. 5.
    Kats, I.Ya. and Kurzhanskii, A.B., Minimax Multistep Filtering in Statistically Uncertain Situations, Avtom. Telemekh., 1978, no. 11, pp. 79–87.Google Scholar
  6. 6.
    Pankov, A.R. and Miller, G.B., Filtering of Random Process in the Statistically Uncertain Linear Stochastic Differential System, Avtom. Telemekh., 2005, no. 1, pp. 59–71.Google Scholar
  7. 7.
    Siemenikhin, K.V., Lebedev, M.V., and Platonov, E.N., Kalman Filtering by Minimax Criterion with Uncertain Noise Intensity Functions, in Proc. Joint 44th IEEE Conf. Decision and Control Eur. Control Conf. (CDC-ECC’2005), Seville, 2005, pp. 1929–1934.Google Scholar
  8. 8.
    Elliott, R.J., Aggoun, L., and Moore, J.B., Hidden Markov Models: Estimation and Control, Berlin: Springer, 1995.zbMATHGoogle Scholar
  9. 9.
    Magnus, J.R. and Neudecker, H., Matrix Differential Calculus, New York: Wiley, 1999. Translated under the title Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Moscow: Fizmatlit, 2002.zbMATHGoogle Scholar
  10. 10.
    Elliott, R., Stochastic Calculus and Applications, New York: Springer, 1982. Translated under the title Stokhasticheskii analiz i ego prilozheniya, Moscow: Mir, 1986.zbMATHGoogle Scholar
  11. 11.
    Ikeda, N. and Watanabe, S., Stochastic Differential Equations and Diffusion Processes, New York: Elsevier, 1981. Translated under the title Stokhasticheskie differentsial’nye uravneniya i diffuzionnye protsessy, Moscow: Nauka, 1986.zbMATHGoogle Scholar
  12. 12.
    Borisov, A.V., Minimax A Posteriori Estimation in the Hidden Markov Models, Avtom. Telemekh., 2007, no. 11, pp. 31–35.Google Scholar
  13. 13.
    Gikhman, I.I. and Skorokhod, A.V., Teoriya sluchainykh protsessov (A Theory of Random Processes), Moscow: Nauka, 1973, vol. 2.Google Scholar
  14. 14.
    Martynyuk, A.A., Lakshmikantam, V., and Lila, S., Ustoichivost’ dvizheniya: metod integral’nykh neravenstv (Motion Stability: Method of Integral Inequalities), Kiev: Naukova Dumka, 1989.Google Scholar
  15. 15.
    Cramer, H. and Leadbetter, M., Stationary and Related Stochastic Processes, New York: Wiley, 1967. Translated under the title Statsionarnye sluchainye protsessy, Moscow: Mir, 1969.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. V. Borisov
    • 1
  1. 1.Institute of Informatics ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations