Minimax control of a process in a linear uncertain-stochastic system with incomplete data


Consideration is given to the control problem in a linear stochastic differential system where constant noise intensities in equations of state and observation are prescribed only accurate within the membership of some known sets. For control optimization, an integral root-mean-square performance criterion is used. The problem is solved by the transition to a dual one, which makes it possible to prove the existence of a saddle point of the criterion and obtain an explicit expression for the minimax control operator as functions of the solution to the dual problem. To solve the latter, an iteration algorithm is proposed; the convergence of the algorithm is proved and investigated by a model example.

This is a preview of subscription content, access via your institution.


  1. 1.

    Davis, M.H.A., Linear Estimation and Stochastic Control, London: Chapman, 1977. Translated under the title Lineinoe otsenivanie i stokhasticheskoe upravlenie, Moscow: Nauka, 1984.

    MATH  Google Scholar 

  2. 2.

    Lebedev, A.A., Bobronnikov, V.T., Krasil’shchikov, M.N., and Malyshev, V.V., Statisticheskaya dinamika i optimizatsiya upravleniya letatel’nykh apparatov (Statistical Dynamics and Optimization of Aircraft Control), Moscow: Mashinostroenie, 1985.

    Google Scholar 

  3. 3.

    Malyshev, V.V., Krasil’shchikov, M.N., and Karlov, V.I., Optimizatsiya nablyudenii i upravleniya letatel’nykh apparatov (Optimization of Observation and Control of Flying Vehicles), Moscow: Mashinostroenie, 1989.

    Google Scholar 

  4. 4.

    Bryson, A.E., New Concepts in Control Theory, J. Guidance, Control, Dynam., 1985, vol. 8, no. 4, pp. 417–425.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Martin, G.D. and Bryson, A.E., Attitude Control of Flexible Spacecraft, J. Guidance, Control, Dynam., 1980, vol. 3, no. 1, pp. 37–41.

    MATH  Google Scholar 

  6. 6.

    Zhdanyuk, B.F., Osnovy statisticheskoi obrabotki traektornykh izmerenii (Statictical Analysis Principles of Trajectory Measurements), Moscow: Sovetskoe Radio, 1978.

    Google Scholar 

  7. 7.

    Bakhshiyan, B.Ts., Nazirov, R.R., and El’yasberg, P.E., Opredelenie i korrektsiya dvizheniya (Determination and Correction of Motion), Moscow: Nayka, 1980.

    MATH  Google Scholar 

  8. 8.

    Kassam, S.A. and Poor, H.V., Robust Techniques for Signal Processing: A Survey, Proc. IEEE, 1985, vol. 73, no. 3, pp. 54–110.

    Google Scholar 

  9. 9.

    Kurzhanskii, A.B., Upravlenie i otsenivanie v usloviyakh neopredelennosti (Control and Estimation under Uncertainty Conditions), Moscow: Nauka, 1977.

    Google Scholar 

  10. 10.

    Anan’ev, B.I., Guaranteed Estimation of Statistically Uncertain Systems and Problems of Motion Correction, Doctoral (Phys.-Math.) Dissertation, Sverdlovsk, Ural Branch of the USSR Academy of Sciences, 1990.

    Google Scholar 

  11. 11.

    Kurzhanski, A.B. and Valyi, I., Ellipsoidal Calculus for Estimation and Control, Boston: Birkhauser, 1996.

    Google Scholar 

  12. 12.

    Looze, D.P., Poor, V., Vastola, K.S., and Darragh, J.C., Minimax Control of Linear Stochastic Systems with Noise Uncertainty, IEEE Trans. Automat. Control, 1983, vol. AC-28, no. 9, pp. 882–888.

    Article  MathSciNet  Google Scholar 

  13. 13.

    Ugrinovskii, V.A. and Petersen, I.R., Minimax LQG Control of Stochastic Partially Observed Uncertain Systems, SIAM J. Control Optim., 2001, vol. 40, no. 4, pp. 1189–1226.

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Moheimani, S.O.R., Savkin, A.V., and Petersen, I.R., Minimax Optimal Control of Discrete-Time Uncertain Systems with Structured Uncertainty, Dynam. Control, 1997, vol. 7, no. 1, pp. 5–24.

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Phillis, Y.A., Optimal Estimation and Control of Discrete Multiplicative Systems with Unknown Second-Order Statistics, J.Optim. Theory Appl., 1990, vol. 64, no. 1, pp. 153–168.

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Rubinovich, E.Ya., Minimax Generalized Linear-quadratic Stochastic Control Problem with Incomplete iInformation, in Singular Solutions and Perturbations in Control Systems, Pereslavl-Zalesskiy, Russia, IFAC Proc. Ser., Laxenburg: IFAC, 1997, pp. 185–189.

    Google Scholar 

  17. 17.

    de la Pena, D.M., Alamo, T., Ramirez, D.R., and Camacho, E.F., Min-Max Model Predictive Control as a Quadratic Program, Proc. 16-th IFAC World Congr., Prague, 2005.

  18. 18.

    de Araújo, H.X. and Langner, C.G., H Control for Uncertain Systems under Time Domain Constraints, Proc. 44 Conf. Decision and Control (CDC’2005), Seville, 2005, pp. 1325–1330.

  19. 19.

    Xu, J.-M. and Yu, L., An LMI Approach to Guaranteed Cost PI Control of Linear Uncertain Systems, Proc. 43rd Conf. Decision and Control (CDC’2004), Nassau, 2004, pp. 2165–2170.

  20. 20.

    Pelevin, A.E., Robust Stabilization of the Linear Object under Uncertain Parameters of the Model, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2003, no. 1, pp. 40–46.

  21. 21.

    Gabasov, R., Kirillova, F.M., and Pesetskaya, T.I., Real-Time Realization of Optimal Output Feedbacks for Linear Systems under Uncertainty Conditions, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2005, no. 4, pp. 44–56.

  22. 22.

    Mehra, R.K., Approaches to Adaptive Filtering, IEEE Transact. Automat. Control, 1972, vol. AC-17, pp. 693–698.

    Article  MathSciNet  Google Scholar 

  23. 23.

    Chen, G. and Chui, C., A Modified Adaptive Kalman Filter for Real-Time Applications, IEEE Trans. Aerosp. Electron. Syst., 1991, vol. 27, pp. 149–154.

    Article  Google Scholar 

  24. 24.

    Pankov, A.R. and Miller, G.B., Minimax Linear Recurrent Filtering of Uncertain Stochastic Sequences by an Integral Criterion, Inform. Protsessy, 2001, vol. 1, no. 2, pp. 150–166.

    Google Scholar 

  25. 25.

    Miller, G.B. and Pankov, A.P., Filtration of a Random Process in a Statistically Uncertain Linear Stochastic Differential System, Autom. Telemekh., 2005, no. 1, pp. 59–71.

  26. 26.

    Miller, G.B. and Pankov, A.P., Minimax Filtering in Linear Stochastic Uncertain Discrete-Continuous Systems, Avtom. Telemekh., 2006, no. 3, pp. 77–93.

  27. 27.

    Fleming, W.H. and Rishel, R.W., Deterministic and Stochastic Optimal Control, New York: Springer-Verlag, 1975. Translated under the title Optimal’noe upravlenie determinirovannymi i stokhasticheskimi sistemami, Moscow: Mir, 1978.

    MATH  Google Scholar 

  28. 28.

    Ostrem, K. Yu., Vvedenie v stokhasticheskuyu teoriyu upravleniya (Introduction to the Stochastic Control Theory), Moscow: Mir, 1973.

    Google Scholar 

  29. 29.

    Pugachev, V.S. and Sinitsyn, I.N., Stokhasticheskie differentsial’nye sistemy (Stochastic Differential Systems), Moscow: Nauka, 1990.

    MATH  Google Scholar 

  30. 30.

    Pankov, A.R. and Siemenikhin, K.V., Minimax Estimation of Random Elements with Application to Infinite-Dimensional Statistical Linearization, Trudy II mezhdunarodnoi konferentsii “Identifikatsiya i zadachi upravleniya’ (SICPRO’2003) (Proc. II Int. Conf. “Identification and Control Problems” (SICPRO’2003)), Moscow, 2003, pp. 1277–1291.

  31. 31.

    Pshenichnyi, B.N., Neobkhodimye usloviya ekstremuma (Necessary Extremum Conditions), Moscow: Nauka, 1982.

    Google Scholar 

  32. 32.

    Zangwill, W.I., Nonlinear Programming. A Unified Approach, New Jersey: Prentice Hall, 1969. Translated under the title Nelineinoe programmirovanie. Edinyi podkhod, Moscow: Sovetskoe Radio, 1973.

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. B. Miller.

Additional information

Original Russian Text © G.B. Miller, A.R. Pankov, 2007, published in Avtomatika i Telemekhanika, 2007, No. 11, pp. 164–177.

This work was supported by INTAS, project no. YSF 04-83-3623, and the Russian Foundation for Basic Research, projects nos. 05-01-00508 and 05-08-17963.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miller, G.B., Pankov, A.R. Minimax control of a process in a linear uncertain-stochastic system with incomplete data. Autom Remote Control 68, 2042–2055 (2007).

Download citation

PACS numbers

  • 02.30.Yy
  • 02.50.Ey