Skip to main content
Log in

Mean characteristics of Markov queueing systems

  • Queueing Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration is given to queueing systems described by nonstationary birth-death processes with rates close to periodic. Questions connected with the existence and design of limiting mean characteristics are studied. Some examples of designing the means for concrete queueing systems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gnedenko, B.V. and Kovalenko, I.N., Vvedenie v teorigu massovogo obsluzhivaniya (Introduction to the Queueing Theory), Moscow: Nauka, 1987.

    Google Scholar 

  2. Kalashnikov, V.V., Kachestvennyi analiz slozhnykh sistem metodom probnykh funktsii (Qualitative Analysis of Complex Systems by the Test Function Method), Moscow: Nauka, 1978.

    Google Scholar 

  3. Artalejo, J.R. and Lopez-Herrero, M.J., Analysis of the Busy Period for the M/M/c Queue: An Algorithmic Approach, J. Appl. Prob., 2001, vol. 38, pp. 209–222.

    Article  MATH  MathSciNet  Google Scholar 

  4. Van Doorn, E., The Transient State Probabilities for a Queueing Model where Potential Customers are Discouraged by Queue Length, J. Appl. Prob., 1981, vol. 18, pp. 499–506.

    Article  MATH  Google Scholar 

  5. Van Doorn, E., Conditions for Exponential Ergodicity and Bounds for the Decay Parameter of a Birth-Death Process, Adv. Appl. Prob., 1985, vol. 17, pp. 504–530.

    Article  Google Scholar 

  6. Fricker, C., Robert, P., and Tibi, D., On the Rate of Convergence of Erlang’s Model, J. Appl. Prob., 1999, vol. 36, pp. 1167–1184.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kijima, M., On the Largest Negative Eigenvalue of the Infinitesimal Generator Associated with M/M/n/n Queues, Oper. Res. Lett., 1990, vol. 9, pp. 59–64.

    Article  MATH  MathSciNet  Google Scholar 

  8. Natvig, B., On the Transient State Probabilities for a Queueing Model where Potential Customers Are Discouraged by Queue Length, J. Appl. Prob., 1974, vol. 11, pp. 345–354.

    Article  MathSciNet  MATH  Google Scholar 

  9. Stadie, W. and Parthasarathy, P.R., On the Convergence to Stationarity of the Many-Server Poisson Queue, J. Appl. Prob., 1999, vol. 36, pp. 546–557.

    Article  Google Scholar 

  10. Stadie, W. and Parthasarathy, P.R., Generating Function Analysis of Some Joint Distributions for Poisson Loss Systems, Queueing Syst., 2000, vol. 34, pp. 183–197.

    Article  Google Scholar 

  11. Voit, M., A Note of the Rate of Convergence to Equilibrium for Erlang’s Model in the Subcritical Case, J. Appl. Prob., 2000, vol. 37, pp. 918–923.

    Article  MATH  MathSciNet  Google Scholar 

  12. Gnedenko, B.V. and Makarov, I.P., Properties of the Solution to the Loss Problem for Periodic Rates, Diff. Uravn., 1971, vol. 7, pp. 1696–1698.

    MATH  MathSciNet  Google Scholar 

  13. Gnedenko, B.V. and Solov’ev, A.D., On the Conditions of the Existence of Final Probabilities for a Markov Process, Math. Oper. Stat., 1973, vol. 4, pp. 379–390.

    MathSciNet  Google Scholar 

  14. Giorno, V. and Nobile, A., On Some Time-Nonhomogeneous Diffusion Approximations to Queueing Systems, Adv. Appl. Prob., 1987, vol. 19, pp. 974–994.

    Article  MATH  MathSciNet  Google Scholar 

  15. Heyman, D.P. and Whitt, W., The Asymptotic Behaviour of Queues with Time-varying Arrival Rates, J. Appl. Prob., 1984, vol. 21, pp. 143–156.

    Article  MATH  MathSciNet  Google Scholar 

  16. Keller, J.B., Time-dependent Queues, SIAM Rev., 1982, vol. 24, pp. 401–412.

    Article  MATH  MathSciNet  Google Scholar 

  17. Zeifman, A.I., Some Properties of the Loss System for Variables Rates, Avtom. Telemekh., 1989, no. 1, pp. 107–113.

  18. Zeifman, A.I., Upper and Lower Bounds on the Rate of Convergence for Nonhomogeneous Birth and Death Processes, Stoch. Proc. Appl., 1995, vol. 59, pp. 157–173.

    Article  MATH  MathSciNet  Google Scholar 

  19. Di Crescenzo, A. and Nobile, A.G., Diffusion Approximation to a Queueing System with Time Dependent Arrival and Service Rates, Queueing Syst., 1995, vol. 19, pp. 41–62.

    Article  MATH  Google Scholar 

  20. Mandelbaum, A. and Massey, W., Strong Approximations for Time-dependent Queues, Math. Oper. Res., 1995, vol. 20, pp. 33–64.

    Article  MATH  MathSciNet  Google Scholar 

  21. Margolius, B., Sample Path Analysis of the M t/M t/c Queue, Queueing Syst., 1999, vol. 31, pp. 59–93.

    Article  MATH  MathSciNet  Google Scholar 

  22. Massey, W.A. and Whitt, W., On Analysis of the Modified Offered-Load Approximation for the Nonstationary Erlang Loss Model, Ann. Appl. Prob., 1994, vol. 4, pp. 1145–1160.

    MATH  MathSciNet  Google Scholar 

  23. Abramov, V. and Liptser, R., On Existence of Limiting Distribution for Time-nonhomogeneous Countable Markov Process, Queueing Syst., 2004, vol. 46, pp. 353–361.

    Article  MATH  MathSciNet  Google Scholar 

  24. Granovsky, B. and Zeifman, A., Nonstationary Queues: Estimation of the Rate of Convergence, Queueing Syst., 2004, vol. 46, pp. 363–388.

    Article  MATH  MathSciNet  Google Scholar 

  25. Hampshire, R.C., Harchol-Balter, M., and Massey, W.A., Fluid and Diffusion Limits for Transient Sojourn Times of Processor Sharing Queues with Time Varying Rates, Queueing Syst., 2006, vol. 53, pp. 19–30.

    Article  MATH  MathSciNet  Google Scholar 

  26. Knessl, C. and Yang, Y., On the Erlang Loss Model with Time Dependent Input, Queueing Syst., 2006, vol. 52, pp. 49–104.

    Article  MATH  MathSciNet  Google Scholar 

  27. Zeifman, A., Leorato, S., Orsingher, E., Satin, Ya., and Shilova, G., Some Universal Limits for Nonhomogeneous Birth and Death Processes, Queueing Syst., 2006, vol. 52, pp. 139–151.

    Article  MATH  MathSciNet  Google Scholar 

  28. Zeifman, A.I. and Satin, Ya.A., On Mean Characteristic Estimators of Some Birth-Death Processes, in Staticheskie metody otsenivaniya i proverki gipotez (Statistical Methods for Estimation and Test of Hypotheses), Perm: Perm. Gos. Univ., 2006.

    Google Scholar 

  29. Lozinskii, S.M., Error Estimate of Ordinary Differential Equation Numerical Integration, Izv. Vyssh. Uchebn. Zaved., 1958, no. 5, pp. 59–90.

  30. Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve, Moscow: Nauka, 1970. Translated into English under the title Stability of Solutions of Differential Equations in Banach Space, Providence: AMS, 1974, vol. 43.

    Google Scholar 

  31. Granovsky, B. and Zeifman, A., The N-limit of Spectral Gap of a Class of Birth-Death Markov Chains, Appl. Stochast. Models in Business and Industry, 2000, vol. 16, pp. 235–248.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Zeifman, Ya.A. Satin, 2007, published in Avtomatika i Telemekhanika, 2007, No. 9, pp. 122–133.

This work was supported by the Russian Foundation for Basic Research, project no. 06-01-00111.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeifman, A.I., Satin, Y.A. Mean characteristics of Markov queueing systems. Autom Remote Control 68, 1583–1593 (2007). https://doi.org/10.1134/S0005117907090135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117907090135

PACS number

Navigation