Research on blood circulation system identifiability


The problem of identifiability by periodic-motion measurements is formulated and solved by a simplest two-circuit mathematical model of blood circulation system. By computeraided symbolic mathematics, the initial point of periodic motion is computed and properties of this motion are studied. The measuring system, which makes enables solving the problem of blood circulation system parametric identification unambiguously, is mathematically strictly defined. Recommendations for practical implementation of this measuring system are given.

This is a preview of subscription content, access via your institution.


  1. 1.

    Guyton, A., Circulatory Physiology, III. Arterial Pressure and Hypertension, London: Saunders, 1980.

    Google Scholar 

  2. 2.

    Shumakov, V.I., Zimin, N.K., Itkin, G.P., and Osadchii, L.I., Iskusstvennoe serdtse (Artificial Heart), Leningrad: Nauka, 1988.

    Google Scholar 

  3. 3.

    Solodyannikov, Yu.V., Elementy matematicheskogo modelirovaniya i identifikatsiya sistemy krovoobrashcheniya (Elements of Mathematical Modeling and Identification of Blood Circulation System), Samara: Samar. Univ., 1994.

    Google Scholar 

  4. 4.

    Teoreticheskoe issledovanie fiziologicheskikh sistem. Matematicheskoe modelirovanie (Theoretical Investigation of Physiological Systems: Mathematical Modeling), Amosov, N.M., Ed., Kiev: Naukova Dumka, 1977.

    Google Scholar 

  5. 5.

    Shumakov, V.I., Novosel’tsev, V.N., Shtengol’d, E.Sh., and Sakharov, M.P., Modelirovanie fiziologicheskikh sistem organizma (Modeling of Physiological Systems of an Organism), Moscow: Meditsina, 1971.

    Google Scholar 

  6. 6.

    Novosel’tsev, V.N., Teoriya upravleniya i biosistemy (Control Systems and Biosystems), Moscow: Nauka, 1978.

    Google Scholar 

  7. 7.

    Itkin, G.P., Design and Investigation of Control Systems for Artificial Nearts by Mathematical Modeling, Cand. Sci. Dissertation, Moscow, 1974.

  8. 8.

    Proshin, A.P. and Solodyannikov, Yu.V., Mathematical Modeling of Blood Circulation System and Its Practical Application, Avtom. Telemekh., 2006, no. 2, pp. 174–188.

  9. 9.

    Neimark, Yu.I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii (The Point Mapping Method in Nonlinear Oscillation Theory), Moscow: Nauka, 1972.

    Google Scholar 

  10. 10.

    Brusin, V.A., Composed Dynamic Systems, Sliding Regimes, and Probability, Soros Edic. J., 1998, no. 3, pp. 118–122.

  11. 11.

    Ljung, L., System Identification: Theory for the User, Upper Saddle River: Prentice-Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol’zovatelya, Moscow: Nauka, 1991.

    MATH  Google Scholar 

  12. 12.

    Hirsh, M., Differential Topology, New York: Springer, 1976. Translated under the title Differentsial’naya topologiya, Moscow: Mir, 1979.

    Google Scholar 

  13. 13.

    Lancaster, P., The Theory of Matrices, New York: Academic, 1969. Translated under the title Teoriya matrits, Moscow: Nauka, 1978.

    Google Scholar 

  14. 14.

    Fikhtengol’tz, G.M., Kurs differentsial’nogo i integral’nogo ischisleniya, Moscow: Fizmatlit, 1958–1960, vols. 1, 3. Translated into English under the title The Fundamentals of Mathematical Analysis, New York: Pergamon, 1965.

    Google Scholar 

  15. 15.

    Titchmarsh, E., The Theory of Functions, London: Oxford Univ. Press, 1932. Tranlsated under the title Teoriya funktsii, Moscow: Nauka, 1980.

    Google Scholar 

Download references

Author information



Additional information

Original Russian Text © T.I. Ostapenko, A.P. Proshin, Yu. V. Solodyannikov, 2007, published in Avtoma tika i Telemekhanika, 2007, No. 7, pp. 132–150.

This work was supported by ZAO “Samara-Dialog.”

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ostapenko, T.I., Proshin, A.P. & Solodyannikov, Y.V. Research on blood circulation system identifiability. Autom Remote Control 68, 1239–1255 (2007).

Download citation

PACS numbers

  • 07.05.Tp
  • 02.30.Yy