Skip to main content
Log in

Phase synchronization: Theory and applications

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The state-of-the-art of the phase synchronization theory was reviewed. Consideration was given to its applications to the synchronous and induction electrical motors, phase locked loops, and autosynchronization of the unbalanced rotors. The Yakubovich-Kalman frequency theorem was widely used to study the phase synchronization systems for global stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tricomi, F., Integrazione di unequazione differenziale presentasi in electrotechnica, Annal. della Roma Schuola Normale Superiore de Pisa, 1933, vol. 2, no. 2, pp. 1–20.

    MATH  MathSciNet  Google Scholar 

  2. Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Oscillation Theory), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  3. Amerio, L., Determinazione delle condizioni di stabilita per gli integrali di unequazione interessante l’electrotechnica, Annali Matematica Pura Appl., 1949, vol. 30, no. 4, pp. 75–90.

    Article  MATH  MathSciNet  Google Scholar 

  4. Seifert, G., On the Existence of Certain Solutions of Nonlinear Differential Equations, Zeitschrift Angewandte Math. Physik, 1952, vol. 3, no. 6, pp. 468–471.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bohm, C., Nuovi criteri di esistenza di soluzione periodiche di una nota equazione differenziale non lineare, Annali Matematica Pura Appl., 1953, vol. 35, no. 4, pp. 343–353.

    Article  MathSciNet  Google Scholar 

  6. Hayes, W.D., On the Equation for a Damped Pendulum under Constant Torque, Zeitschrift Angewandte Math. Physik, 1953, vol. 4, no. 5, pp. 398–401.

    Article  MATH  MathSciNet  Google Scholar 

  7. Belyustina, L.N., Bykov, V.V., Kiveleva, K.G., and Shalfeev, V.D., On the Value of the Locking Band of PLL with Proportional-Integrating Filter, Izv. Vuzov, Radiofiz., 1970, vol. 13, no. 4, pp. 561–567.

    Google Scholar 

  8. Gubar’, N.A., Study of One Piecewise-Linear Dynamic System with Three Parameters, Prikl. Mat. Mekh., 1961, vol. 25, no. 6, pp. 1011–1023.

    MathSciNet  Google Scholar 

  9. Barbashin, E.A. and Tabueva, V.A., Dinamicheskie sistemy s tsilindricheskim fazovym prostranstvom (Dynamic Systems with Cylindrical Phase Space), Moscow: Nauka, 1969.

    Google Scholar 

  10. Ivanov-Smolenskii, A.V., Elektricheskie mashiny (Electrical Machines), Moscow: Energiya, 1980.

    Google Scholar 

  11. Haendel, A., Grundgesetze der Physik, Leipzig: Fachbuchverlag, 1958. Translated under the title Osnovnye zakony fiziki, Moscow: Fizmatgiz, 1959.

    Google Scholar 

  12. Yanko-Trinitskii, A.A., Novyi metod analiza raboty sinkhronnykh dvigatelei pri rezkoperemennykh nagruzkakh (A New Method of Analysis of Operation of the Synchronous Motors under Sharply Varying Loads), Moscow: Gosenergoizdat, 1958.

    Google Scholar 

  13. Barbashin, E.A., Vvedenie v teoriyu ustoichivosti (Introduction to the Theory of Stability), Moscow: Nauka, 1967.

    Google Scholar 

  14. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium State), Moscow: Nauka, 1978.

    Google Scholar 

  15. Shakhgil’dyan, V.V. and Lyakhovkin, A.A., Sistemy fazovoi avtopodstroiki chastoty (Phase Locked Loops), Moscow: Svyaz’, 1972.

    Google Scholar 

  16. Leonov, G.A. and Seledzhi, S.M., Sistemy fazovoi sinkhronizatsii v analogovoi i tsifrovoi skhemotekhnike (Systems of Phase Synchronization in Analog and Digital Circuit Technology), St. Petersburg: Nevskii Dialekt, 2002.

    Google Scholar 

  17. Leonov, G.A., Ponomarenko, D.V., and Smirnova, V.B., Frequency-Domain Methods for Nonlinear Analysis, Theory and Applications, Singapore: World Scientific, 1996.

    MATH  Google Scholar 

  18. Leonov, G.A., Reitmann, V., and Smirnova, V.B., Nonlocal Methods for Pendulum-Like Feedback Systems, Stuttgart: Teubner, 1992.

    Google Scholar 

  19. Leonov, G.A., Mathematical Problems of Control Theory, Singapore: World Scientific, 2001.

    MATH  Google Scholar 

  20. Belykh, V.N. and Lebedeva, L.N., Studying Map of Circle, Prikl. Mat. Mekh., 1982, no. 5, pp. 611–615.

  21. Shakhtarin, B.I., Stability of Discrete First-order Systems, Radiotekh. Elektron., 1977, no. 11, pp. 2418–2420.

  22. Shakhtarin, B.I. and Arkhangel’skii, V.A., Dynamic Characteristics of the Phase Systems, Radiotekh. Elektron., 1977, no. 5, pp. 978–987.

  23. Osborne, H.C., Stability Analysis of an Nth Power Digital Phase Locked Loop. Part. I: First-order DPLL, IEEE Trans. Commun., 1980, vol. 28, pp. 1343–1354.

    Article  Google Scholar 

  24. Leonov, G.A. and Seledzhi, S.M., Stability and Bifurcations of Phase-loocked Loops for Digital Signal Processors, Int. J. Bifurcat. Chaos, 2005, vol. 15, no. 4, pp. 1347–1360.

    Article  MATH  MathSciNet  Google Scholar 

  25. Viterbi, A.J., Principles of Coherent Communications, New York: McGraw-Hill, 1966. Translated under the title Printsipy kogerentnoi svyazi, Moscow: Sovetskoe Radio, 1970.

    Google Scholar 

  26. Gardner, F.M., Phase-Lock Techniques, New York: Wiley, 1966.

    Google Scholar 

  27. Gupta, S.C., Phase Locked Loops, Proc. IEEE., 1975, vol. 63, no. 2, pp. 291–306.

    Google Scholar 

  28. Lindsey, W.C., Synchronization Systems in Communication and Control, New York: Prentice-Hall, 1972. Translated under the title Sistemy sinkhronizatsii v svyazi i upravlenii, Moscow: Sovetskoe Radio, 1978.

    Google Scholar 

  29. Sistemy fazovoi sinkhronizatsii (Phase Synchronization Systems), Shakhgil’dyan, V.V. and Belyustina, L.N., Eds., Moscow: Radio i Svyaz’, 1982.

    Google Scholar 

  30. Sistemy fazovoi avtopodstroiki chastoty s elementami diskretizatsii (Phase Locked Loops with Elements of Discretization), Shakhgil’dyan, V.V., Ed., Moscow: Svyaz’, 1979.

    Google Scholar 

  31. Borner, H., Phasenkopplungssysteme in der Nachrichten, Mess-und Regelungstechnik, Berlin: Technik, 1976.

    Google Scholar 

  32. Nash, G., Phase Locked Loop, Design Fundamentals, Phoenix: Motorola, 1994.

    Google Scholar 

  33. Leonov, G.A., Burkin, I.M., and Shepeljavy, A.I., Frequency Methods in Oscillation Theory, Dordrecht: Kluwer, 1996.

    MATH  Google Scholar 

  34. Leonov, G.A. and Smirnova, V.B., Matematicheskie problemy teorii fazovoi sinkhronizatsii (Mathematical Problems of the Phase Synchronization Theory), St. Petersburg: Nauka, 2000.

    Google Scholar 

  35. Shakhtarin, B.I., Analiz kusochno-lineinykh sistem s fazovym regulirovaniem (Analysis of Piecewise-Linear Systems with Phase Control), Moscow: Mashinostroenie, 1991.

    Google Scholar 

  36. Lindsey, W.C. and Chie, C.M., A Survey of Digital Phase Locked Loops, Proc. IEEE, 1981, vol. 69, no. 4, pp. 671–685.

    Article  Google Scholar 

  37. Ugryumov, E.P., Tsifrovaya skhemotekhnika (Digital Circuit Technology), St. Petersburg: BHV, 2000.

    Google Scholar 

  38. Lapsley, P., Bier, J., Shoham, A., and Lee, E.A., DSP Processor Fundamentals Archicture and Features, New York: IEE Press, 1997.

    Google Scholar 

  39. Smith, S.W., The Scientist and Engineers Guide to Digital Signal Processing, San Diego: California Technical Publishing, 1999.

    Google Scholar 

  40. Colonina, A., Ulakhovich, D., and Yakovlev, L., Tsifrovye protsessory obrabotki signalov firmy Motorola (Motorola Digital Signal Processors), St. Petersburg: BHV, 2000.

    Google Scholar 

  41. Colonina, A., Ulakhovich, D., and Yakovlev, L., Algoritmy i protsessory tsifrovoi obrabotki signalov (Algorithms and Processors for Digital Signal Processing), St. Petersburg: BHV, 2001.

    Google Scholar 

  42. Leonov, G.A. and Seledzhi, S.M., Methods of Misphasing Correction in Digital Signal Processors, Vestn. S.-Petersburg. Gos. Univ., 2004, vol. 10, no. 1–2, pp. 36–47.

    Google Scholar 

  43. Leonov, G.A. and Seledzhi, S.M., Design of Block Diagram and Stability Analysis of the Floating Phase Locked Loops for the Digital Signal Processors, Avtom. Telemekh., 2005, no. 3, pp. 11–19.

  44. Leonov, G.A. and Seledzhi, S.M., Design of Phase-locked Loops for Digital Signal Processors, Int. J. Innovative Comput. Inform. Control, 2005, vol. 1, no. 4, pp. 1–11.

    MathSciNet  Google Scholar 

  45. Alekseenko, A.G., Osnovy mikroskhemotekhniki (Fundamentals of Microcurcuit Technology), Moscow: Yunimediastail, 2002.

    Google Scholar 

  46. Tanenbaum, A., Structured Computer Organization, New Jersey: Prentice Hall, 1999. Translated under the title Arkhitektura komp’yutera, Moscow: Piter, 2003.

    MATH  Google Scholar 

  47. Horiwtz, P. and Hill, W., The Art of Electronics Cambridge: Cambridge Univ. Press, 1998. Translated under the title Iskusstvo skhemotekhniki, Moscow: Mir, 2003.

    Google Scholar 

  48. Abramovich, I.M., Blekhman, I.I., Lavrov, B.P., and Plis, D.A., Phenomenon of Synchronization of Rotating Bodies (Rotors), Otkrytiya, izobreteniya, 1988, no. 1, diploma no. 333. Registered by the State Committee of the USSR for Inventions and Discoveries, May 14, 1987.

  49. Blekhman, I.I., Self-synchronization of the Vibrators of some Vibrating Machines, Inzhenernyi Sb., 1953, vol. 16.

  50. Blekhman, I.I., Sinkhronizatsiya dinamicheskikh sistem (Synchronization of Dynamic Systems), Moscow: Nauka, 1971.

    Google Scholar 

  51. Blekhman, I.I., Sinkhronizatsiya v prirode i tekhnike (Synchronization in Nature and Engineering), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  52. Blekhman, I.I. and Malakhova, O.Z., Extremal Attributes of Stability of some Motions, Prikl. Mat. Mekh., 1990, vol. 54, no. 1, pp. 142–161.

    MATH  MathSciNet  Google Scholar 

  53. Blekhman, I.I., Vibratsionnaya mekhanika (Vibrational Mechanics), Moscow: Fizmatgiz, 1994.

    MATH  Google Scholar 

  54. Selected Topics in Vibrational Mechanics, Blekhman, I.I., Ed., Singapore: World Scientific, 2003.

    MATH  Google Scholar 

  55. Panovko, Ya.G. and Gubanova, I.I., Ustoichivost’ i kolebaniya uprugikh sistem (Stability and Oscillations of Elastic System), Moscow: Nauka, 1979.

    Google Scholar 

  56. Stephenson, A.A., A New Type of Dynamical Stability, Mem. Proc. Manchr. Cit. Philos. Soc., 1908, vol. 52, pp. 15–21.

    Google Scholar 

  57. Kapitsa, P.L., Dynamic Stability of the Pendulum with Oscillationg Suspension Point, Zh. Eksp. Teor. Fiz, 1951, vol. 21, no. 5, pp. 588–598.

    Google Scholar 

  58. Leonov, G.A. and Shumafov, M.M., Metody stabilizatsii lineinykh upravlyaemykh sistem (Methods of Stabilization of Linear Controllable Systems), St. Petersburg: S.-Peterburg. Gos. Univ., 2005.

    Google Scholar 

  59. Yakubovich, V.A., Leonov, G.A., and Gelig, A.Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Singapore: World Scientific, 2004.

    MATH  Google Scholar 

  60. Leonov, G.A., On One Class of Dynamic Systems with Cylindrical Phase Space, Sib. Mat. Zh., 1976, vol. 17, no. 1, pp. 91–112.

    Article  MATH  MathSciNet  Google Scholar 

  61. Leonov, G.A., Second Lyapunov Method in the Theory of Phase Synchronization, Prikl. Mat. Mekh., 1976, vol. 40, no. 2, pp. 238–244.

    MATH  MathSciNet  Google Scholar 

  62. Hale, J.K., Some Examples of Infinite Dimensional Systems, Contemporary Math., 1987, vol. 58, pp. 215–226.

    MathSciNet  Google Scholar 

  63. Blekhman, I.I., Fradkov, A.L., Nijmeijer, H., and Pogromsky, A.Yu., On Self-synchronization and Controlled Synchronization, Syst. Control Lett., 1997, vol. 31, pp. 299–305.

    Article  MATH  MathSciNet  Google Scholar 

  64. Blekhman, I.I., Fradkov, A.L., Tomchina, O.P., and Bogdanov, D.E., Self-synchronization and Controlled Synchronization: General Definition and Example Design, Math. Comput. Simulation, 2000, vol. 58, no. 4–6, pp. 367–384.

    MathSciNet  Google Scholar 

  65. Blekhman, I.I. and Fradkov, A.L., On General Definitions of Synchronization, in Selected Topics in Vibrational Mechanics, Blekhman, I.I., Ed., Singapore: World Scientific, 2004, pp. 179–188.

    Google Scholar 

  66. Fradkov, A.L., Kiberneticheskaya fizika: printsipy i primery (Cybernetic Physics: Principles and Examples), St. Petersburg: Nauka, 2003.

    Google Scholar 

  67. Rosenblum, M.G., Pikovsky, A.S., and Kurths, J., Phase Synchronization of Chaotic Oscillators, Phys. Rev. Lett., 1996, vol. 76, pp. 1804–1807.

    Article  Google Scholar 

  68. Pikovsky, A.S., Rosenblum, M.G., and Kurths, J., Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge Univ. Press, 2001.

    MATH  Google Scholar 

  69. Barbashin, E.A. and Krasovskii, N.N., On Motion Stability in the Large, Dokl. Akad. Nauk SSSR, 1952, vol. 86, no. 3, pp. 453–459.

    MATH  Google Scholar 

  70. La Salle, J.P. and Lefschets, S., Stability by Lyapunov’s Direct Method, New York: Academic, 1961. Translated under the title Issledovanie ustoichivosti pryamym metodom Lyapunova, Moscow: Mir, 1964.

    Google Scholar 

  71. Lefschetz, S., Stability of Nonlinear Control Systems, New York: Academic, 1965. Translated under the title Ustoichivost’ nelineinykh sistem avtomaticheskogo upravleniya, Moscow: Mir, 1967.

    MATH  Google Scholar 

  72. Bakaev, Yu.N., Some Questions of the Nonlinear Theory of Phase Systems, Proc. Zhukovskii VVIA, 1959, vol. 800.

  73. Fagiuoli, E. and Szegö, G.P., Qualitative Analysis by Modern Methods of a Stability Problem in Power-system Analysis, J. Franklin Inst., 1970, vol. 290, no. 2, pp. 103–111.

    Article  MATH  MathSciNet  Google Scholar 

  74. Leonov, G.A., On Boundedness of the Trajectories of the Phase Systems, Sib. Mat. Zh., 1974, vol. 15, no. 3, pp. 687–692.

    MATH  MathSciNet  Google Scholar 

  75. Noldus, E., New Direct Lyapunov-type Method for Studying Synchronization Problems, Automatika, 1977, vol. 13, no. 2, pp. 139–151.

    Article  MATH  MathSciNet  Google Scholar 

  76. Leonov, G.A., Stability and Oscillaitons of the Phase Systems, Sib. Mat. Zh., 1975, vol. 16, no. 5, pp. 1031–1052.

    MATH  MathSciNet  Google Scholar 

  77. Leonov, G.A., Discontinuous Load Rating Problem for Inductor Motors, Technische Mechanik, 2004, vol. 24, no. 3–4, pp. 271–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.A. Leonov, 2006, published in Avtomatika i Telemekhanika, 2006, No. 10, pp. 47–85.

This work was supported by the Russian Foundation for Basic Research, project no. 04-01-00250A, and Program of the Russia-Netherlands Cooperation NWO-RFFI no. 047.011.2004.004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonov, G.A. Phase synchronization: Theory and applications. Autom Remote Control 67, 1573–1609 (2006). https://doi.org/10.1134/S0005117906100031

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117906100031

PACS numbers

Navigation