Automation and Remote Control

, Volume 67, Issue 4, pp 552–561 | Cite as

Discrete optimization by optimal control methods I. Separable problems

  • S. I. Sergeev
Determinate Systems


Two general solution schemes are designed for separable discrete optimization problems. Approximations from below and from above to the optimal value of the quality criterion are determined. These schemes are based on a unified theoretical base—sufficient conditions for the global optimal known in optimal control theory. Known and new methods for defining a resolving function, which is essential for applying these conditions, are described.

PACS number

02.30.Yy 07.05.DZ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mikhalevich, I.S. and Volkovich, V.L., Vychislitel’nye metody issledovaniya i proektirovaniya slozhnykh sistem (Computer-Aided Research Methods and Design of Complicated Systems), Moscow: Nauka, 1988.Google Scholar
  2. 2.
    Cooper, M.W., A Survey of Methods for Pure Nonlinear Integer Programming, Manag. Sci., 1981, vol. 27, no. 3, pp. 353–361.zbMATHGoogle Scholar
  3. 3.
    Alekseev, O.G., Kompleksnoe primenenie metodov diskretnoi optimizatsii (Complex Application of Discrete Optimization Methods), Moscow: Nauka, 1987.Google Scholar
  4. 4.
    Sergienko, I.V., Matematicheskie modeli i metody resheniya zadach diskretnoi optimizatsii (Mathematical Models and Methods of Solving Discrete Optimization Problems), Kiev: Naukova Dumka, 1985.Google Scholar
  5. 5.
    Berzin, E.A., Optimal’noe raspredelenie resursov i elementy sinteza sistem (Optimal Resource Distribution and Elements of System Design), Moscow: Sovetskoe Radio, 1974.Google Scholar
  6. 6.
    Teplitskii, M.G., A Discrete Additive Programming Problem, Tekh. Kibern., 1982, no. 3, pp. 36–41.Google Scholar
  7. 7.
    Volkovich, O.V., Roshin, V.A., and Sergienko, I.V., Models and Methods for Integer Quadratic Programming Problems, Kibernetika, 1987, no. 3, pp. 1–15.Google Scholar
  8. 8.
    Khartmann, K., Tselochislennoe nelineinoe programmirovanie (Nonlinear Integer Programming), Available from VINITI, 1976, Moscow, no. 1687-76.Google Scholar
  9. 9.
    Hansen, P., Methods of Nonlinear 0-1 Programming, Ann. Discrete Math., 1979, vol. 5, pp. 53–70.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gupta, O.K. and Ravindran, A., Branch-and-Bound Experiments in Cover Nonlinear Integer Programming, Manag. Sci., 1985, vol. 31, no. 12, pp. 1533–1546.MathSciNetGoogle Scholar
  11. 11.
    Krotov, V.F. and Sergeev, S.I., Algorithms for Certain Linear and Linear Integer Programming Problems. I–IV, Avtom. Telemekh., 1980, no 12, pp. 86–96; 1981, no. 1, pp. 86–96; no. 3, pp. 83–94; no. 4, pp. 103–112.Google Scholar
  12. 12.
    Sergeev, S.I., Algorithms for the Travelling Salesman Problem. I, Avtom. Telemekh., 1994, no. 5, pp. 66–79.Google Scholar
  13. 13.
    Krotov, V.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Methods and Problems of Optimal Control), Moscow: Nauka, 1973.Google Scholar
  14. 14.
    Krotov, V.F. and Fel’dman, I.N., An Iterative Solution Method for the Optimal Control Problem, Tekh. Kibern., 1983, no. 2, pp. 160–168.Google Scholar
  15. 15.
    Bellman, R.E. and Kalaba, R.E., Quasilinearization and Nonlinear Boundary-Value Problems, New York: Elsevier, 1965. Translated under the title Kvazilinearizatsiya i nelineinye kraevye zadachi, Moscow: Mir, 1968.Google Scholar
  16. 16.
    Spravochnik po teorii avtomaticheskogo upravleniya (Automatic Control Theory: A Reference Guide), Krasovskii, A.A., Ed., Moscow: Nauka, 1987.Google Scholar
  17. 17.
    Krotov, V.F., Solution Algorithms and Optimization of Control Systems. I, II, Tekh. Kibern., 1975, no. 5, pp. 3–15; no. 6, pp. 3–13.Google Scholar
  18. 18.
    Sergeev, S.I., Algorithms for the Travelling Salesman Problem. II, Avtom. Telemekh., 1994, no. 6, pp. 106–114.Google Scholar
  19. 19.
    Sergeev, S.I. and Chernyshenko, A.V., Solution Algorithms for the Minimax Travelling Salesman Problem. II, Avtom. Telemekh., 1995, no. 8, pp. 124–141.Google Scholar
  20. 20.
    Sergeev, S.I., The Quadratic Assignment Problem. I, II, Avtom. Telemekh., 1999, no. 8, pp. 127–147; no. 9, pp. 137–143.Google Scholar
  21. 21.
    Sergeev, S.I., Lower Bounds for the Three-Dimensional Assignment Problem. I, II, Tr. III Int. Conf. Identification of Systems and Control Problems (SICPRO’04), Moscow: Inst. Probl. Upravlen., 2004 (CD: ISBN-5-201-14966-9, pp. 1708–1726; pp. 1727–1740).Google Scholar
  22. 22.
    Sergeev, S.I., A General Approach to Dual Estimation in Discrete Optimization Problems, Tr. III Int. Conf. Identification of Systems and Control Problems (SICPRO’03), Moscow: Inst. Probl. Upravlen., 2003 (CD: ISBN-5-201-1498-0, pp. 657–676).Google Scholar
  23. 23.
    Babaev, D.A., Mamedov, K.Sh., and Shikhaliev, N.Sh., Reduction of the Solution of the General Non-linear Discrete Programming Problem to the Solution of a Sequence of Problems of Reduced Dimension, Diskret. Mat., 1992, vol. 4, no. 1, pp. 50–59.MathSciNetGoogle Scholar
  24. 24.
    Gendler, M.B. and Zaretskii, L.S., An Exact Solution Algorithm for the Multidimensional Resource Distribution Problem, Avtom. Telemekh., 1992, no. 6, pp. 138–145.Google Scholar
  25. 25.
    Christofides, N., Mingozzi, A., and Toth, P., State-Space Relaxation Procedures for Computation of Bounds to Routing Problem, Networks, 1981, vol. 11, no. 2, pp. 145–164.MathSciNetGoogle Scholar
  26. 26.
    Sergeev, S.I., Algorithms for Solving the Separable Discrete Optimization Problem, Zh. Vychisl. Mat. Mat. Fiz., 1990, no. 8, pp. 1273–1275.Google Scholar
  27. 27.
    Sergeev, S.I., A General Approach to Solving the Minimax Discrete Programming Problem, in Chislennye metody optimizatsii i analiza (Numerical Optimization and Analysis Methods), Novosibirsk: Nauka, 1992, pp. 46–54.Google Scholar
  28. 28.
    Gabasov, R. and Kirillova, F.M., Osnovy dinamicheskogo programmirovaniya (Elements of Dynamic Programming), Minsk: Belarus. Gos. Univ., 1975.Google Scholar
  29. 29.
    Gerasimov, V.A., Sequential Approximations of the Bellman Function, Avtom. Telemekh., 1987, no. 7, pp. 67–71.Google Scholar
  30. 30.
    Bayard, D.S., Reduced Complexity of Dynamic Programming Based on Policy Iteration, J. Math. Anal. Appl., 1992, vol. 170, no. 1, pp. 75–103.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Plotnikov, V.N. and Galkin, A.V., An Approximate Solution for the Travelling Salesman Problem, Ekonomika Mat. Metody, 1973, no. 6, pp. 1142–1146.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. I. Sergeev
    • 1
  1. 1.Statistics, and InformaticsMoscow State University of EconomicsMoscowRussia

Personalised recommendations