Skip to main content
Log in

Mathematical methods to study the polling systems

  • Reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Reviewed were the mathematical methods that are used to investigate the polling systems which found wide application in modeling and design of various transport and industrial processes. Emphasis was made on the models of polling systems used to investigate the wireless broadband networks. The polling systems were classified; presented were stochastic models and methods of investigating discrete-time and continuous-time systems, systems with cyclic, periodic, and random queue polling, as well as the methods of their optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al’bores, F.Kh. and Bocharov, P.P., Analysis of Two Limited Relative-priority Queues in the One-server Queuing System with Phase-type Distribution, Avtom. Telemekh., 1993, no. 4, pp. 96–107.

  2. Bakanov, A.S., Vishnevskii, V.M., and Lyakhov, A.I., A Method for Evaluating Performance of Wireless Communication Networks with Centralized Control, Avtom. Telemekh., 2000, no. 4, pp. 97–105.

  3. Vishnevskii, V.M., Wireless Networks for Broadband Access to the Internet Resources, Elektrosvyaz’, 2000, no. 10. pp. 9–13.

  4. Vishnevskii, V.M., Teoreticheskie osnovy proektirovaniya komp’yuternykh setei (Theoretical Fundamentals of Computer Network Design), Moscow: Tekhnosfera, 2003.

    Google Scholar 

  5. Vishnevskii, V.M., Lyakhov, A.I., and Guzakov, N.N., Estimation of the Maximum Throughput of the Wireless Access to Internet, Avtom. Telemekh., 2004, no. 9, pp. 52–70.

  6. Vishnevskii, V.M., Lyakhov, A.I., Portnoi, S.L., and Shakhnovich, I.V., Shirokopolosnye besprovodnye seti peredachi informatsii (Broadband Wireless Information Transmission Networks), Moscow: Tekhnosfera, 2005.

    Google Scholar 

  7. Gavrilov, A.F. and Krasil’nikov, Yu.P., Cyclic Service with Direct Information Connection, Avtom. Telemekh., 1976, no. 10, pp. 17–22.

  8. Efrosinin, D.V. and Rykov, V.V., Numerical Study of the Optimal Control of a System with Heterogeneous Servers, Avtom. Telemekh., 2003, no. 2, pp. 143–151.

  9. Zhdanov, V.S. and Saksonov, E.A., Existence Conditions for Stable Modes in Cyclic Queuing Systems, Avtom. Telemekh., 1979, no. 2, pp. 29–38.

  10. Kitaev, M.Yu. and Rykov, V.V., Queuing System with Branching Flows of Secondary Customers, Avtom. Telemekh., 1980, no. 9, pp. 52–61.

  11. Kovalevskii, A.P., Positive Recurrence and Optimization of Polling Systems with Multiple Servers, in Aktual’nye problemy sovremennoi matematiki, Novosibirsk: NII MIOO NGU, 1997, vol. 3, pp. 75–86.

    Google Scholar 

  12. Klimov, G.P. and Mishkoi, G.K., Prioritetnye sistemy obsluzhivaniya s orientatsiei (Priority Queuing Systems with Orientation), Moscow: Mosk. Gos. Univ., 1979.

    Google Scholar 

  13. Lakontsev, D.V. and Semenova, O.V., Mathematical Models of Centralized Control in Wireless Networks IEEE 802.11, in Raspredelennye komp’yuternye i telekommunikatsionnye seti (DCCN-2005) (Distributed Computer and Telecommunication Networks (DCCN-2005)), Moscow: Tekhnosfera, 2005, pp. 77–83.

    Google Scholar 

  14. Nazarov, A.A. and Urazbaeva, S.U., Study of the Decomposed Model of the Multi-Packet Mode of Communication Network with DQDB Protocol, Vest. Tomsk. Gos. Univ., Matematika. Kibernetika. Informatika, 2002, no. 275, pp. 199–201.

  15. Nazarov, A.A. and Urazbaeva, S.U., Study of Discrete-Time Queuing Systems and Their Application to Analysis of Fiber-Optic Communication Networks, Avtom. Telemekh., 2002, no. 12, pp. 59–70.

  16. Rykov, V.V., On the Monotonicity Conditions for the Optimal Control Policies for Queuing Systems, Avtom. Telemekh., 1999, no. 9, pp. 92–106.

  17. Rykov, V.V. and Verbitskii, S.N., Analysis of Some Algorithms for Polling Web-pages, Vest. Ross. Univ. Druzhby Narodov, Prikladn. Mat. Inform., 2000, no. 1, pp. 96–104.

  18. Saksonov, E.A., Study of Multi-Channel Closed Cyclic Queuing System, Avtom. Telemekh., 1979, no. 12, pp. 80–86.

  19. Saksonov, E.A., A Method for Calculation of the Marginal State Probabilities of the Cyclic Queuing Systems, Avtom. Telemekh., 1997, no. 1, pp. 85–89.

  20. Timofeev, E.A., Optimization of Mean Queue Lengths in a Queuing System with Branching Flows of Secondary Customers, Avtom. Telemekh., 1995, no. 3, pp. 60–67.

  21. Titenko, I.M., On Cyclically Served Multi-Channel Systems with Losses, Avtom. Telemekh., 1984, no. 10, pp. 88–95.

  22. Foss, S.G. and Chernova, N.I., On Polling Systems with Infinite Number of Stations, Sib. Mat. Zh., 1996, vol. 37, no. 4, pp. 940–956.

    MathSciNet  Google Scholar 

  23. Foss, S.G. and Chernova, N.I., Comparison Theorems and Ergodic Properties of the Polling Systems, Probl. Peredachi Inf., 1996, no. 4, pp. 46–71.

  24. Yakushev, Yu.F., On Optimal Protocol of Multiple Marker-Type Access in Local Computer Network, Avtom. Telemekh., 1990, no. 10, pp. 125–134.

  25. Adan, I.J.B.F., Boxma, O.J., and Resing, J.A.C., Queuing Models with Multiple Waiting Lines, Queuing Syst., 2001, vol. 37, no. 1–3, pp. 65–98.

    MathSciNet  Google Scholar 

  26. Afanassieva, L.G., Delcoigne, F., and Fayolle, G., On Polling Systems where Servers Wait for Customers, Markov Process and Related Fields, 1997, vol. 3, no. 4, pp. 527–545.

    MathSciNet  Google Scholar 

  27. Ajmone Marsan, M., Donatelli, S., and Neri, F., GSPN Models of Markovian Multiserver MultiQueue Systems, Performance Evaluat., 1990, vol. 11, no. 4, pp. 227–240.

    Google Scholar 

  28. Almási, B., A Queuing Model for a Non-homogeneous Polling System Subject to Breakdowns, Ann. Univ. Sci. Budapest, Sect. Comp., 1999, vol. 18, pp. 11–23.

    MATH  Google Scholar 

  29. Altman, E., Blanc, H., Khamisy, A., and Yechiali, Y., Gated-type Polling Systems with Walking and Switch-in Times, Commun. Stat.: Stochastic Models, 1994, vol. 10, no. 4, pp. 741–763.

    MathSciNet  Google Scholar 

  30. Altman, E. and Foss, S., Polling on a Graph with General Arrival and Service Time Distribution, Lett. Oper. Res., 1997, vol. 20, no. 4, pp. 187–194.

    MathSciNet  Google Scholar 

  31. Altman, E., Foss, S., Riehl, E., and Stidham, S., Performance Bounds and Pathwise Stability for Generalized Vacation and Polling Systems, Oper. Res., 1998, vol. 46, no. 1, pp. 137–148.

    Google Scholar 

  32. Altman, E., Gaujal, B., and Hordijk, A., Optimal Open-loop Control of Vacations, Polling and Service Assignment, Queuing Syst., 2000, vol. 36, no. 4, pp. 303–325.

    MathSciNet  Google Scholar 

  33. Altman, E., Khamisy, A., and Yechiali, U., On Elevator Polling with Globally Gated Regime, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 85–90.

    MathSciNet  Google Scholar 

  34. Altman, E. and Kofman, D., Bounds for Performance Measures of Token Rings, IEEE/ACM Trans. Networking, 1996, vol. 4, no. 2, pp. 292–299.

    Article  Google Scholar 

  35. Altman, E., Konstantopoulos, P., and Liu, Z., Stability, Monotonicity and Invariant Quantities in General Polling Systems, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 35–57.

    MathSciNet  Google Scholar 

  36. Altman, E. and Kushner, H., Control of Polling in Presence of Vacations in Heavy Traffic with Applications to Satellite and Mobile Radio Systems, SIAM J. Contr. Optimiz., 2002, vol. 41, no. 1, pp. 217–252.

    MathSciNet  Google Scholar 

  37. Altman, E. and Levy, H., Queuing in Space, Advances Appl. Prob., 1995, vol. 26, no. 4, pp. 1095–1116.

    MathSciNet  Google Scholar 

  38. Altman, E. and Spieksma, F., Polling Systems: Moment Stability of Station Times and Central Limit Theorems, Commun. Stat.: Stochastic Models, 1996, vol. 12, no. 2, pp. 307–328.

    MathSciNet  Google Scholar 

  39. Altman, E. and Yechiali, U., Cyclic Bernoulli Polling, ZOR—Methods and Models Oper. Res., 1993, vol. 38, no. 1, pp. 55–76.

    MathSciNet  Google Scholar 

  40. Altman, E. and Yechiali, U., Polling in a Closed Network, Prob. Eng. Inf. Sci., 1994, vol. 8, pp. 327–343.

    Google Scholar 

  41. Baba, Y., Analysis of Batch Arrival Cyclic Service Multiqueue Systems with Limited Service Discipline, J. Oper. Res. Soc. Japan, 1991, vol. 34, no. 1, pp. 93–104.

    MATH  MathSciNet  Google Scholar 

  42. Baxter, L.A., Harche, F., and Yechiali, U., A Note on Minimizing the Variability of the Waiting Times in a Globally-gated Elevator Polling System, Naval Res. Logistics, 1997, vol. 44, no. 6, pp. 605–611.

    MathSciNet  Google Scholar 

  43. Bertsimas, D., The Achievable Region Method in the Optimal Control of Queuing Systems: Formulations, Founds and Policies, Queuing Syst., 1995, vol. 21, no. 3–4, pp. 337–389.

    MATH  MathSciNet  Google Scholar 

  44. Bertsimas, D. and Mourtzinou, G., Decomposition Results for General Polling Systems and Their Applications, Queuing Syst., 1999, vol. 31, no. 3–4, pp. 295–316.

    MathSciNet  Google Scholar 

  45. Bertsimas, D. and Niño-Mora, J., Optimization of Multiclass Queuing Networks with Changeover Times via the Achievable Region Approach: I. The Single-Station Case, Math. Oper. Res., 1999, vol. 24, no. 2, pp. 331–361.

    MathSciNet  Google Scholar 

  46. Bing, B., Wireless Local Area Networks: The New Wireless Revolution, New York: Wiley-Interscience, 2002.

    Google Scholar 

  47. Birman, A., Gail, H.R., Hantler, S.L., Rosber, Z., and Sidi, M., An Optimal Service Policy for Buffer Systems, J. Association Comput. Machinery, 1995, vol. 42, no. 3, pp. 641–657.

    Google Scholar 

  48. Bisdikian, C. and Merakos, L., Output Process from a Continuous Tokenring Local Area Network, IEEE Trans. Commun., 1992, vol. 40, no. 12, pp. 1796–1799.

    Article  Google Scholar 

  49. Blanc, J.P.C., A Numerical Approach to Cyclic-Service Queuing Models, Queuing Syst., 1990, vol. 6, no. 2, pp. 173–188.

    MATH  MathSciNet  Google Scholar 

  50. Blanc, J.P.C., An Algorithmic Solution of Polling Models with Limited Service Disciplines, IEEE Trans. Commun., 1992, vol. 40, no. 7, pp. 1152–1155.

    Article  MathSciNet  Google Scholar 

  51. Blanc, J.P.C., Performance Evaluation of Polling Systems by Means of the Power-series Algorithm, Ann. Oper. Res., 1992, vol. 35, no. 1–4, pp. 155–186.

    MATH  Google Scholar 

  52. Blanc, J.P.C., The Power-series Algorithm Applied to Cyclic Polling Systems, Commun. Stat.: Stochastic Models, 1991, vol. 7, no. 4, pp. 527–545.

    MATH  MathSciNet  Google Scholar 

  53. Blanc, J.P.C., The Power-series Algorithm for Polling Systems with Time Limits, Prob. Eng. Inf. Sci., 1998, vol. 12, pp. 221–237.

    MATH  MathSciNet  Google Scholar 

  54. Blanc, J.P.C. and van Der Mei, R.D., Optimization of Polling Systems with Bernoulli Schedules, Performance Evaluat., 1995, vol. 22, no. 2, pp. 139–158.

    Google Scholar 

  55. Blanc, J.P.C. and van der Mei, R.D., The Power-series Algorithm Applied to Polling Systems with a Dormant Server, in The Fundamental Role of Teletraffic in the Evolution of Telecommunication Networks, Labetoulle, J. and Roberts, J.W., Eds., Amsterdam: Elsevier, 1994, pp. 865–874.

    Google Scholar 

  56. Borovkov, A., Korshunov, D., and Schassberger, R., Ergodicity of a Polling Network with an Infinite Number of Stations, Queuing Syst., 1999, vol. 32, no. 1, pp. 169–193.

    MathSciNet  Google Scholar 

  57. Borovkov, A. and Schassberger, R., Ergodicity of a Polling Network, Stochastic Proc. Appl., 1994, vol. 50, no. 2, pp. 253–262.

    MathSciNet  Google Scholar 

  58. Borst, S.C., Polling Systems, Amsterdam: Stichting Mathematisch Centrum, 1996.

    Google Scholar 

  59. Borst, S.C., Polling Systems with Multiple Coupled Servers, Queuing Syst., 1995, vol. 20, no. 3–4, pp. 369–394.

    MATH  MathSciNet  Google Scholar 

  60. Borst, S.C. and Boxma, O.J., Polling Models with and without Switchover Times, Oper. Res., 1997, vol. 47, pp. 536–543.

    Google Scholar 

  61. Borst, S.C., Boxma, O.J., Harink, J.H.A., and Huitema, G.B., Optimization of Fixed-time Polling Schemes, Telecommun. Syst., 1994, vol. 3, pp. 31–59.

    Article  Google Scholar 

  62. Borst, S.C., Boxma, O., and Levy, H., The Use of Service Limits for Efficient Operation of Multi-Station Single-medium Communication Systems, IEEE/ACM Trans. Networking, 1995, vol. 3, no. 5, pp. 602–612.

    Article  Google Scholar 

  63. Borst, S.C. and van der Mei, R.D., Waiting Time Approximations for Multiple-server Polling Systems, Performance Evaluat., 1998, vol. 31, no. 3–4, pp. 163–182.

    Google Scholar 

  64. Boxma, O.J., Models of Two Queues: A Few New Views, in Teletraffic Analysis and Computer Performance Evaluation, Boxma, O.J., Cohen, J.W., and Tijms, H., Eds., Amsterdam: Elsevier, 1986, pp. 75–98.

    Google Scholar 

  65. Boxma, O.J., Static Optimization of Queuing Systems, in Recent Trends in Optimization Theory and Applications, Agarwal, R.P., Ed., Singapore: World Scientific, 1995, pp. 1–16.

    Google Scholar 

  66. Boxma, O.J., Deng, Q., and Resing, J.A.C., Polling Systems with Regularly Varying Service and/or Switchover Times, Advances Performance Anal., 2000, vol. 3, pp. 71–107.

    Google Scholar 

  67. Boxma, O.J. and Down, D.G., Dynamic Server Assignment in a Two-queue Model, Eur. J. Oper. Res., 1997, vol. 103, pp. 595–609.

    Article  Google Scholar 

  68. Boxma, O.J. and Groenendijk, W.P., Pseudo Conservation Laws in Cyclic-service Systems, J. Appl. Prob., 1987, vol. 24, pp. 949–964.

    MathSciNet  Google Scholar 

  69. Boxma, O.J., Groenendijk, W.P., and Weststrate, J.A., A Pseudoconservation Law for Service Systems with a Polling Table, IEEE Trans. Commun., 1990, vol. 38, no. 10, pp. 1865–1870.

    Article  Google Scholar 

  70. Boxma, O.J. and Kelbert, M., Stochastic Bounds for a Polling System, Ann. Oper. Res., 1994, vol. 48, no. 1–4, pp. 295–310.

    MathSciNet  Google Scholar 

  71. Boxma, O.J., Koole, G.M., and Mitrani, I., Polling Models with Threshold Switching, in Quantitative Methods in Parallel Systems, New York: Springer-Verlag, 1995, pp. 129–140.

    Google Scholar 

  72. Boxma, O.J., Levy, H., and Weststrate, J.A., Efficient Visit Frequencies for Polling Tables: Minimization of Waiting Cost, Queuing Syst., 1991, vol. 9, no. 1–2, pp. 133–162.

    Google Scholar 

  73. Boxma, O.J., Levy, H., and Weststrate, J.A., Efficient Visit Orders for Polling Systems, Performance Evaluat., 1993, vol. 18, no. 2, pp. 103–123.

    Google Scholar 

  74. Boxma, O.J., Levy, H., and Yechiali, U., Cyclic Reservation Schemes for Efficient Operation of Multiplequeue Single-server Systems, Ann. Oper. Res., 1992, vol. 35, no. 1–4, pp. 187–208.

    Google Scholar 

  75. Boxma, O.J. and Meister, B., Waiting-time Approximations for Cyclic-Service Systems with Switchover Times, Performance Evaluat., 1987, vol. 7, pp. 299–308.

    MathSciNet  Google Scholar 

  76. Boxma, O.J., Schlegel, S., and Yechiali, U., Two-queue Polling Models with a Patient Server, Ann. Oper. Res., 2002, vol. 112, no. 1–4, pp. 101–121.

    MathSciNet  Google Scholar 

  77. Boxma, O.J., Weststrate, J.A., and Yechiali, U., A Globally Gated Polling System with Server Interruptions, and Applications to the Repairman Problem, Prob. Eng. Inf. Sci., 1993, vol. 7, no. 2, pp. 187–208.

    Google Scholar 

  78. Brill, P.H. and Hlynka, M., A Single Server N-line Queue in which a Customer May Receive Special Treatment, Commun. Stat.: Stochastic Models, 1998, vol. 14, no. 4, pp. 905–931.

    MathSciNet  Google Scholar 

  79. Browne, S. and Kella, O., Parallel Service with Vacations, Oper. Res., 1995, vol. 43, no. 5, pp. 870–878.

    MathSciNet  Google Scholar 

  80. Browne, S. and Weiss, G., Dynamic Priority Rules for Polling with Multiple Servers, Oper. Res. Lett., 1992, vol. 12, no. 3, pp. 129–138.

    Article  MathSciNet  Google Scholar 

  81. Browne, S. and Yechiali, U., Dynamic Scheduling in Single Server Multiclass Service Systems with Unit Buffers, Naval Res. Logistics, 1991, vol. 38, no. 3, pp. 383–396.

    Google Scholar 

  82. Bruneel, H. and Kim, B.G., Discrete-time Models for Communication Systems Including ATM, Boston: Kluwer, 1993.

    Google Scholar 

  83. Bruno, R., Conti, M., and Gregory, E., Bluetooth: Architecture, Protocols and Scheduling Algorithms, Cluster Comput., 2002, vol. 5, pp. 117–131.

    Article  Google Scholar 

  84. Campbell, G.M., Cyclic Queuing Systems, Eur. J. Oper. Res., 1991, vol. 51, no. 2, pp. 155–167.

    Article  Google Scholar 

  85. Chakravarthy, S.R., Analysis of a Priority Polling System with Group Services, Commun. Stat.: Stochastic Models, 1998, vol. 14, no. 1, pp. 25–49.

    MATH  MathSciNet  Google Scholar 

  86. Chakravarthy, S.R. and Thiagarajan, S., Two Parallel Finite Queues with Simultaneous Services and Markovian Arrivals, J. Appl. Math. Stochastic Anal., 1997, vol. 10, no. 10, pp. 383–405.

    MathSciNet  Google Scholar 

  87. Chang, K.-H., First-come-first-served Polling Systems, Asia-Pacific J. Oper. Res., 2001, vol. 18, no. 1, pp. 1–11.

    MATH  MathSciNet  Google Scholar 

  88. Chang, K.S., Stability Conditions for a Pipeline Polling Scheme in Satellite Communications, Queuing Syst., Theory Appl., 1993, vol. 14, no. 3–4, pp. 339–348.

    MATH  Google Scholar 

  89. Chang, R.K.C. and Lam, S., A Novel Approach to Queue Stability Analysis of Polling Models, Performance Evaluat., 2000, vol. 40, no. 1–3, pp. 27–46.

    Google Scholar 

  90. Chang, W. and Down, D.G., Exact Asymptotics for k i -limited Exponential Polling Models, Queuing Syst., 2002, vol. 42, no. 4, pp. 401–419.

    MathSciNet  Google Scholar 

  91. Chiarawongse, J. and Srinivasan, M.M., On Pseudo-conservation Laws for the Cyclic Server System with Compound Poisson Arrivals, Oper. Res. Lett., 1991, vol. 10, no. 8, pp. 453–459.

    Article  MathSciNet  Google Scholar 

  92. Choudhury, G.L. and Whitt, W., Computing Distributions and Moments in Polling Models by Numerical Transform Inversion, Performance Evaluat., 1996, vol. 25, no. 4, pp. 267–292.

    Google Scholar 

  93. Chung, H., Un, C., and Jung, W., Performance Analysis of Markovian Polling Systems with Single Buffers, Performance Evaluat., 1994, vol. 19, no. 4, pp. 303–315.

    Google Scholar 

  94. Coffman, E.G., Jr., Liu, Z., and Weber, R.R., Optimal Robot Scheduling for Web Search Engines, J. Scheduling, 1998, vol. 1, no. 1, pp. 15–29.

    Article  MathSciNet  Google Scholar 

  95. Coffman, E.G., Jr., Puhalskii, A.A., and Reiman, M.I., Polling Systems in Heavy Traffic: A Bessel Process Limit, Math. Oper. Res., 1998, vol. 23, no. 2, pp. 257–304.

    MathSciNet  Google Scholar 

  96. Coffman, E.G., Jr., Puhalskii, A.A., and Reiman, M.I., Polling Systems with Zero Switchover Times: A Heavy-Traffic Averaging Principle, Ann. Appl. Prob., 1995, vol. 5, no. 3, pp. 681–719.

    MathSciNet  Google Scholar 

  97. Cooper, R.B., Niu, S.-C., and Srinivasan, M.M., A Decomposition Theorem for Polling Models: The Switchover Times are Effectively Additive, Oper. Res., 1996, vol. 44, no. 4, pp. 629–633.

    Google Scholar 

  98. Cooper, R.B., Niu, S.-C., and Srinavasan, M.M., Setups in Polling Models: Does it Make Sense to Set up if no Work is Waiting?, J. Appl. Prob., 1999, vol. 36, pp. 585–592.

    Google Scholar 

  99. Cooper, R.B., Niu, S.-C., and Srinavasan, M.M., Some Reflections on the Renewal-theory Paradox in Queuing Theory, J. Appl. Math. Stochastic Anal., 1998, vol. 11, no. 3, pp. 355–368.

    MathSciNet  Google Scholar 

  100. Cooper, R.B., Niu, S.-C., and Srinivasan, M.M., When Does Forced Idle Time Improve Performance in Polling Models?, Manag. Sci., 1998, vol. 44, no. 8, pp. 1079–1086.

    Google Scholar 

  101. Daganzo, C.F., Some Properties of Polling Systems, Queuing Syst., 1990, vol. 6, no. 2, pp. 137–154.

    MATH  MathSciNet  Google Scholar 

  102. de Souza e Silva, E., Gail, R.H., and Muntz, R.R., Polling Systems with Server Timeouts and Their Application to Token Passing Networks, IEEE/ACM Trans. Networking, 1995, vol. 3, no. 5, pp. 560–575.

    Google Scholar 

  103. Delcoigne, F. and Fayolle, G., Thermodynamical Limit and Propagation of Chaos in Polling Systems, Markov Processes and Related Fields, 1999, vol. 5, no. 1, pp. 89–124.

    MathSciNet  Google Scholar 

  104. Delcoigne, F. and la Fortelle, A., Large Deviations Rate Function for Polling Systems, Queuing Syst., 2002, vol. 41, no. 1–2, pp. 13–44.

    Google Scholar 

  105. Deng, Q., A Two-queue E/1-L Polling Model with Regularly Varying Service and/or Switchover Times, Commun. Stat.: Stochastic Models, 2003, vol. 19, no. 4, pp. 507–526.

    MATH  Google Scholar 

  106. Dou, C. and Chang, J.-F., Serving Two Correlated Queues with a Synchronous Server under Exhaustive Service Discipline and Nonzero Switchover Time, IEEE Trans. Commun., 1991, vol. 39, no. 11, pp. 1582–1589.

    Google Scholar 

  107. Down, D., On the Stability of Polling Models with Multiple Servers, J. Appl. Prob., 1998, vol. 35, no. 4, pp. 925–935.

    MATH  MathSciNet  Google Scholar 

  108. Dror, H. and Yechiali, U., Closed Polling Models with Failing Nodes, Queuing Syst., 2000, vol. 35, no. 1–4, pp. 55–81.

    MathSciNet  Google Scholar 

  109. Duenyas, I., Gupta, D., and Olsen, T.L., Control of a Single-server Tandem Queuing System with Setups, Oper. Res., 1998, vol. 46, no. 2, pp. 218–230.

    MathSciNet  Google Scholar 

  110. Duenyas, I. and van Oyen, M.P., Heuristic Scheduling of Parallel Heterogeneous Queues with Set-ups, Manag. Sci., 1996, vol. 42, no. 6, pp. 814–829.

    Google Scholar 

  111. Duenyas, I. and van Oyen, M.P., Stochastic Scheduling of Parallel Queues with Set-up Costs, Queuing Syst., 1995, vol. 19, pp. 421–444.

    Google Scholar 

  112. Duffield, N.G., Exponents for the Tails of Distributions in Some Polling Models, Queuing Syst., 1997, vol. 26, no. 1–2, pp. 105–119.

    MATH  MathSciNet  Google Scholar 

  113. Eisenberg, M., The Polling System with a Stopping Server, Queuing Syst., 1994, vol. 18, no. 3–4, pp. 387–431.

    MATH  MathSciNet  Google Scholar 

  114. Eliazar, I., Gated Polling Systems with Levy Inflow and Inter-dependent Switchover Times: A Dynamical-Systems Approach, Queuing Syst., 2005, vol. 49, no. 1, pp. 49–72.

    MATH  MathSciNet  Google Scholar 

  115. Eliazar, I., The Snowblower Problem, Queuing Syst., 2003, vol. 45, no. 4, pp. 357–380.

    MATH  MathSciNet  Google Scholar 

  116. Eliazar, I., Fibich, G., and Yechiali, U., A Communication Multiplexer Problem: Two Alternating Queues with Dependent Randomly-timed Gated Regime, Queuing Syst., 2002, vol. 42, no. 4, pp. 325–353.

    MathSciNet  Google Scholar 

  117. Eliazar, I. and Yechiali, U., Polling under the Randomly-timed Gated Regime, Commun. Stat.: Stochastic Models, 1998, vol. 14, no. 1–2, pp. 79–93.

    MathSciNet  Google Scholar 

  118. Fabian, O. and Levy, H., Pseudo-Cyclic Policies for Multi-queue Single Server Systems, Ann. Oper. Res., 1994, vol. 48, no. 1–4, pp. 127–152.

    Google Scholar 

  119. Fayolle, G. and Lasgouttes, J.-M., A State-dependent Polling Model with Markovian Routing, IMA Volumes Math. Appl., 1995, vol. 71, pp. 283–301.

    MathSciNet  Google Scholar 

  120. Federgruen, A. and Katalan, Z., Approximating Queue Size and Waiting-time Distributions in General Polling Systems, Queuing Syst., 1994, vol. 18, no 3–4, pp. 353–386.

    MathSciNet  Google Scholar 

  121. Feng, W., Kowada, M., and Adachi, K., A Two-queue Model with Bernoulli Service Schedule and Switching Times, Queuing Syst., 1998, vol. 30, no. 3–4, pp. 405–434.

    MathSciNet  Google Scholar 

  122. Feng, W., Kowada, M., and Adachi, K., Analysis of a Multi-server Queue with Two Priority Classes and (M, N)-threshold Service Schedule I: Non-preemptive Priority, Int. Trans. Oper. Res., 2000, vol. 7, no. 6, pp. 653–671.

    Article  MathSciNet  Google Scholar 

  123. Feng, W., Kowada, M., and Adachi, K., Performance Analysis of a Two-queue Model with an (M, N)-threshold Service Schedule, J. Oper. Res. Soc. Japan, 2001, vol. 44, no. 2, pp. 101–124.

    MathSciNet  Google Scholar 

  124. Feng, W., Kowada, M., and Adachi, K., Two-queue and Two-server Model with a Hysteretic Control Service Policy, Sci. Math. Japonicae, 2001, vol. 54, no. 1, pp. 93–107.

    MathSciNet  Google Scholar 

  125. Fischer, M.J., Harris, C.M., and Xie, J., An Interpolation Approximation for Expected Wait in a Time-limited Polling System, Comput. Oper. Res., 2000, vol. 27, no. 4, pp. 353–366.

    Article  MathSciNet  Google Scholar 

  126. Foss, S. and Kovalevskii, A., A Stability Criterion via Fluid Limits and Its Application to a Polling System, Queuing Syst., 1999, vol. 32, no. 1–3, pp. 131–168.

    MathSciNet  Google Scholar 

  127. Foss, S. and Last, G., On the Stability of Greedy Polling Systems with General Service Policies, Prob. Eng. Inf. Sci., 1998, vol. 12, no. 1, pp. 49–68.

    MathSciNet  Google Scholar 

  128. Foss, S. and Last, G., Stability of Polling Systems with Exhaustive Service Policies and State-dependent Routing, Ann. Appl. Prob., 1996, vol. 6, no. 1, pp. 116–137.

    MathSciNet  Google Scholar 

  129. Fournier, L. and Rosberg, Z., Expected Waiting Times in Cyclic Service Systems under Priority Disciplines, Queuing Syst., 1991, vol. 9, no. 4, pp. 419–439.

    MathSciNet  Google Scholar 

  130. Frigui, I. and Alfa, A.S., Analysis of a Discrete Time Table Polling System with MAP Input and Time-limited Service Discipline, Telecommunication Syst., 1999, vol. 12, no. 1, pp. 51–77.

    Google Scholar 

  131. Frigui, I. and Alfa, A.S., Analysis of Time-limited Polling System, Comput. Commun., 1998, vol. 21, no. 6, pp. 558–571.

    Article  Google Scholar 

  132. Fuhrmann, S.W., A Decomposition Result for a Class of Polling Models, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 109–120.

    MATH  MathSciNet  Google Scholar 

  133. Fuhrmann, S.W. and Moon, A., Queues Served in Cyclic Order with an Arbitrary Start-up Distribution, Naval Res. Logistics, 1990, vol. 37, no. 1, pp. 123–133.

    MathSciNet  Google Scholar 

  134. Fuhrmann, S.W. and Wang, Y.T., Analysis of Cyclic Service Systems with Limited Service: Bounds and Approximations, Performance Evaluat., 1988, vol. 8, pp. 35–54.

    MathSciNet  Google Scholar 

  135. Gandhi, A.D. and Cassandras, C.G., Optimal Control of Polling Models for Transportation Applications, Math. Comput. Modelling, 1996, vol. 23, no. 11–12, pp. 1–23.

    MathSciNet  Google Scholar 

  136. Georgiadis, L. and Szpankowski, W., Stability of Token Passing Rings, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 7–33.

    MathSciNet  Google Scholar 

  137. Grasman, S.E., Olsen, T.L., and Birge, J.R., Finite Buffer Polling Models with Routing, Eur. J. Oper. Res., 2005, vol. 165, no. 3, pp. 794–809.

    Article  MathSciNet  Google Scholar 

  138. Grelá-M’Poko, B., Mehmet Ali, M., and Hayes, J.F., Approximate Analysis of Asymmetric Single-Service Prioritized Token Passing Systems, IEEE Trans. Commun., 1991, vol. 39, no. 7, pp. 1037–1040.

    Google Scholar 

  139. Grillo, D., Polling Mechanism Models in Communication Systems—Some Application Examples, in Stochastic Analysis of Computer and Communication Systems, Takagi, H., Ed., Amsterdam: North-Holland, 1990, pp. 659–698.

    Google Scholar 

  140. Groenendijk, W.P. and Levy, H., Performance Analysis of Transaction Driven Computer Systems via Queuing Analysis of Polling Models, IEEE Trans. Comput., 1992, vol. 41, no. 4, pp. 455–466.

    Article  Google Scholar 

  141. Günalay, Y. and Gupta, D., Polling System with Patient Server and State-dependent Setup Times, IIE Trans., 1997, vol. 29, no. 6, pp. 469–480.

    Google Scholar 

  142. Günalay, Y. and Gupta, D., Threshold Start-up Control Policy for Polling Systems, Queuing Syst., 1998, vol. 29, no. 2–4, pp. 399–421.

    Google Scholar 

  143. Gupta, D. and Buzacott, J.A., A Production System with Two Job Classes, Changeover Times and Revisitation, Queuing Syst., 1990, vol. 6, no. 4, pp. 353–368.

    MathSciNet  Google Scholar 

  144. Gupta, D. and Günalay, Y., Recent Advances in the Analysis of Polling Systems, in Advances in Combinatorial Methods with Applications to Probability and Statistics, Special Edition, Boston: Birkhauser, 1996, pp. 339–360.

    Google Scholar 

  145. Gupta, D., Günalay, Y., and Srinivasan, M.M., The Relationship Between Preventive Maintenance and Manufacturing System Performance, Eur. J. Oper. Res., 2001, vol. 132, no. 1, pp. 146–162.

    Article  Google Scholar 

  146. Gupta, D. and Srinivasan, M.M., Polling Systems with State-dependent Setup Times, Queuing Syst., 1996, vol. 22, no. 3–4, pp. 403–423.

    MathSciNet  Google Scholar 

  147. Harel, A. and Stulman, A., Polling, Greedy and Horizon Servers on a Circle, Queuing Syst., 1995, vol. 43, no. 1, pp. 177–186.

    Google Scholar 

  148. Hirayama, T., Hong, S.J., and Krunz, M.M., A New Approach to Analysis of Polling Systems, Queuing Syst., 2004, vol. 48, no. 1–2, pp. 89–102.

    MathSciNet  Google Scholar 

  149. Hwang, L.-C. and Chang, C.-J., An Exact Analysis of an Asymmetric Polling System with Mixed Service Discipline and General Service Order, Comput Commun., 1997, vol. 20, pp. 1292–1300.

    Article  Google Scholar 

  150. Ibe, O.C., Analysis of Polling Systems with Mixed Service Discipline, Commun. Stat.: Stochastic Models, 1990, vol. 6, no. 4, pp. 667–689.

    MATH  MathSciNet  Google Scholar 

  151. Ibe, O.C. and Cheng, X., Approximate Analysis of Asymmetric Single-service Token Passing Systems, IEEE Trans. Commun., 1989, vol. 37, no. 6, pp. 572–577.

    Article  Google Scholar 

  152. Ibe, O.C. and Trivedi, K.S., Stochastic Petri Net Models of Polling Systems, IEEE J. Selected Areas Commun., 1990, vol. 8, no. 9, pp. 1649–1657.

    Article  Google Scholar 

  153. Ibe, O.C. and Trivedi, K.S., Two Queues with Alternating Service and Server Breakdown, Queuing Syst., 1990, vol. 7, no. 3, pp. 253–268.

    MathSciNet  Google Scholar 

  154. Itai, A. and Rosberg, Z., A Golden Ratio Control Policy for a Multiple-acess Channel, IEEE Trans. Automat. Control., 1984, vol. 29, pp. 712–718.

    Article  MathSciNet  Google Scholar 

  155. Jiang, Y., Tham, C.-K., and Ko, C.-C., Delay Analysis of a Probabilistic Priority Discipline, Eur. Trans. Telecommun., 2002, vol. 13, no. 6, pp. 563–577.

    Google Scholar 

  156. Jirachiefpattana, A., County, P., Dillon, T.S., and Lai, R., Performance Evaluation of PC Routers Using a Single-server Multi-queue System with a Reflection Technique, Comput. Commun., 1997, vol. 20, no. 1, pp. 1–10.

    Article  Google Scholar 

  157. Jung, W.Y. and Un, C.K., Analysis of a Finite-buffer Polling System with Exhaustive Service Based on Virtual Buffering, IEEE Trans. Commun., 1994, vol. 42, no. 12, pp. 3144–3149.

    Google Scholar 

  158. Karvelas, D., Leon-Garcia, A., Delay Analysis of Various Service Disciplines in Symmetric Token Passing Networks, IEEE Trans. Commun., 1993, vol. 41, no. 9, pp. 1342–1355.

    Article  Google Scholar 

  159. Katayama, T., Performance Analysis and Optimization of a Cyclic-Service Tandem Queuing System with Multi-class Customers, Comput. Math. Appl., 1992, vol. 24, no. 1/2, pp. 25–33.

    MATH  MathSciNet  Google Scholar 

  160. Khalid, M., Vyavahare, P.D., and Kerke, H.B., Analysis of Asymmetric Polling Systems, Comput. Oper. Res., 1997, vol. 42, no. 4, pp. 317–333.

    Google Scholar 

  161. Khamisy, A., Altman, E., and Sidi, M., Polling Systems with Synchronization Constraints, Ann. Oper. Res., 1992, vol. 35, no. 1–4, pp. 231–267.

    Google Scholar 

  162. Khamisy, A. and Sidi, M., Discrete-time Priority Queues with Two-state Markov Modulated Arrivals, Commun. Stat.: Stochastic Models, 1992, vol. 8, no. 2, pp. 337–357.

    MathSciNet  Google Scholar 

  163. Kim, E. and van Oyen, M.P., Beyond the Rule: Dynamic Scheduling of a Two-class Loss Queue, Math. Methods Oper. Res., 1997, vol. 48, no. 1, pp. 17–36.

    Google Scholar 

  164. Kim, E., van Oyen, M.P., and Rieders, M., General Dynamic Programming Algorithms Applied to Polling Systems, Commun. Stat.: Stochastic Models, 1998, vol. 14, no. 5, pp. 1197–1221.

    Google Scholar 

  165. Kofman, D. and Yechiali, U., Polling with Stations Breakdowns, Performance Evaluat., 1996, vol. 27–28, no. 4, pp. 647–672.

    Google Scholar 

  166. Konheim, A.G. and Meister, B., Waiting Lines and Times in a System with Polling, J. ACM, 1974, vol. 21, no. 3, pp. 470–490.

    Article  MathSciNet  Google Scholar 

  167. Kohneim, A.G., Levy, H., and Srinivasan, M.M., Descendant Set: An Efficient Approach for the Analysis of Polling Systems, IEEE Trans. Commun., 1994, vol. 42, no. 2–4, pp. 1245–1253.

    Google Scholar 

  168. Koole, G., Assigning a Single Server to Inhomogeneous Queues with Switching Costs, Theoretical Comput. Sci., 1997, vol. 182, no. 1–2, pp. 203–216.

    MATH  MathSciNet  Google Scholar 

  169. Koole, G. and Nain, Ph., On the Value Function of a Priority Queue with an Application to a Controlled Polling Model, Queuing Syst., 2000, vol. 34, no. 1–4, pp. 199–214.

    MathSciNet  Google Scholar 

  170. Kopsel, A., Ebert, J.-P., and Wolisz, A., A Performance Comparison of Point and Distributed Function of an IEEE 802.11 WLAN in the Presence of Real-time Requirements, Proc. Inf. Workshop MoMuc2000, Waseda, Japan, October 2000.

  171. Kroese, D.P., Heavy Traffic Analysis for Continuous Polling Models, J. Appl. Prob., 1997, vol. 34, no. 3, pp. 720–732.

    MATH  MathSciNet  Google Scholar 

  172. Kroese, D.P. and Schmidt, V., A Continuous Polling System with General Service Times, Ann. Appl. Prob., 1992, vol. 2, no. 4, pp. 906–927.

    MathSciNet  Google Scholar 

  173. Kudoh, S., Takagi, H., and Hashida, O., Second Moments of the Waiting Time in Symmetric Polling Systems, J. Operat. Res. Soc. Japan, 2000, vol. 43, no. 2, pp. 306–316.

    MathSciNet  Google Scholar 

  174. Landry, R. and Stavrakakis, I., Queuing Study of 3-priority Policy with Distinct Service Strategies, IEEE/ACM Trans. Networking, 1993, vol. 1, no. 5, pp. 576–589.

    Article  Google Scholar 

  175. Langaris, C., A Polling Model with Retrial Customers, J. Oper. Res. Soc. Japan, 1997, vol. 40, no. 4, pp. 489–508.

    MATH  MathSciNet  Google Scholar 

  176. Langaris, C., Gated Polling Models with Customers in Orbit, Math. Comput. Modeling, 1999, vol. 30, no. 3–4, pp. 171–187.

    MATH  MathSciNet  Google Scholar 

  177. Langaris, C., Markovian Polling Systems with Mixed Service Discipline and Retrial Customers, TOP, 1999, vol. 7, pp. 305–322.

    MATH  MathSciNet  Google Scholar 

  178. Lee, D.-S., A Two-queue Model with Exhaustive and Limited Service Disciplines, Commun. Stat.: Stochastic Models, 1996, vol. 12, no. 2, pp. 285–305.

    MATH  Google Scholar 

  179. Lee, D.-S., Analysis of a Two-queue Model with Bernoulli Schedules, J. Appl. Prob., 1997, vol. 34, no. 1, pp. 176–191.

    MATH  Google Scholar 

  180. Lee, D-S. and Sengupta, B., An Approximate Analysis of a Cyclic Server Queue with Limited Service and Reservations, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 153–178.

    MathSciNet  Google Scholar 

  181. Lee, D-S. and Sengupta, B., Queuing Analysis of a Threshold Based Priority Scheme for ATM Networks, IEEE Trans. Networking, 1993, vol. 1, no. 6, pp. 709–717.

    Google Scholar 

  182. Lee, T., Analysis of Infinite Servers Polling Systems with Correlated Input Process and State Dependent Vacations, Eur. J. Oper. Res., 1999, vol. 115, no. 2, pp. 392–412.

    Article  MATH  Google Scholar 

  183. Lee, T., Analysis of Random Polling Systems with Infinite Coupled Servers and Correlated Input Process, Comput. Oper. Res., 2003, vol. 30, no. 13, pp. 2003–2020.

    Google Scholar 

  184. Lee, T., A Closed Form Solution for the Asymmetric Random Polling System with Correlated Levy Input Process, Math. Oper. Res., 1997, vol. 22, no. 2, pp. 432–457.

    MATH  MathSciNet  Google Scholar 

  185. Lee, T., Models for Design and Control of Single Server Polling Computer and Communication Systems, Oper. Res., 1998, vol. 46, pp. 515–531.

    MATH  MathSciNet  Google Scholar 

  186. Lee, T. and Sunjaya, J., Exact Analysis of Asymmetric Random Polling Systems with Single Buffers and Correlated Levy Input Process, Queuing Syst., 1996, vol. 23, no. 3–4, pp. 131–156.

    MathSciNet  Google Scholar 

  187. Leung, K.K., Cyclic Service Systems with Non-preemptive, Time-limited Service, IEEE Trans. Commun., 1994, vol. 42, no. 8, pp. 2521–2524.

    Article  Google Scholar 

  188. Leung, K.K., Cyclic Service Systems with Probabilistically-limited Service, IEEE J. Selected Areas Commun., 1991, vol. 9, no. 2, pp. 185–193.

    Article  Google Scholar 

  189. Levy, H., Analysis of Cyclic Polling Systems with Binomial-gated Service, in Performance of Distributed Parallel Systems, Amsterdam: Elsevier, 1989, pp. 127–139.

    Google Scholar 

  190. Levy, H., Binomial-gated Service: A Method for Effective Operation and Optimization of Polling Systems, IEEE Trans. Commun., 1991, vol. 39, no. 9, pp. 1341–1350.

    Article  Google Scholar 

  191. Levy, H. and Kleinrock, L., Polling Systems with Zero Switch-over Periods: A General Method for Analysis the Expected Delay, Performance Evaluat., 1991, vol. 13, no. 2, pp. 97–107.

    MathSciNet  Google Scholar 

  192. Levy, H. and Sidi, M., Polling Systems: Applications, Modeling and Optimization, IEEE Trans. Commun., 1990, vol. 38, no. 10, pp. 1750–1760.

    Article  Google Scholar 

  193. Levy, H. and Sidi, M., Polling Systems with Simultaneous Arrivals, IEEE Trans. Commun., 1991, vol. 39, no. 6, pp. 823–827.

    Article  Google Scholar 

  194. Levy, H., Sidi, M., and Boxma, O.J., Dominance Relations in Polling Systems, Queuing Syst., 1990, vol. 6, no. 2, pp. 155–171.

    MathSciNet  Google Scholar 

  195. Liu, Z. and Nain, P., Optimal Scheduling in Some Multi-queue Single-server Systems, IEEE Trans. Automat. Control, 1992, vol. 37, no. 2, pp. 247–252.

    Article  MathSciNet  Google Scholar 

  196. Liu, Z., Nain, P., and Towsley, D., On Optimal Polling Policies, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 59–83.

    MathSciNet  Google Scholar 

  197. Lye, K. and Seah, K., Random Polling Scheme with Priority, Electronic Lett., 1992, vol. 28, no. 14, pp. 1290, 1291.

    Google Scholar 

  198. Magalhaes, M.N., McNickle, D.C., and Salles, M.C.B., Outputs from a Loss System with Two Stations and a Smart (Cyclic) Server, Investigacion Oper., 1998, vol. 16, no. 1–3, pp. 111–126.

    Google Scholar 

  199. Markowitz, D.M. and Wein, L.M., Heavy Traffic Analysis of Dynamic Cyclic Policies: A Unified Treatment of the Single Machine Scheduling Problem, Oper. Res., 2001, vol. 49, no. 2, pp. 246–270.

    MathSciNet  Google Scholar 

  200. Massoulie, L., Stability of Non-Markovian Polling Systems, Queuing Syst., 1995, vol. 21, no. 1–2, pp. 67–95.

    MATH  MathSciNet  Google Scholar 

  201. Menshikov, M. and Zuyev, S., Polling Systems in Critical Regime, Stoch. Proc. Appl., 2001, vol. 92, pp. 201–218.

    Article  MathSciNet  Google Scholar 

  202. Miorandi, D., Zanella, A., and Pierobon, G., Performance Evaluation of Bluetooth Polling Schemes: An Analytical Approach, ACM Mobile Networks Appl., 2004, vol. 9, no. 2, pp. 63–72.

    Google Scholar 

  203. Murata, M., Shiomoto, K., and Miyahara, H., Performance Analysis of Token Ring Networks with a Reservation Priority Discipline, IEEE Trans. Commun., 1990, vol. 38, no. 10, pp. 1844–1853.

    Article  Google Scholar 

  204. Nakdimon, O. and Yechiali, U., Polling Systems with Breakdowns and Repairs, Eur. J. Oper. Res., 2001, vol. 149, no. 3, pp. 588–613.

    MathSciNet  Google Scholar 

  205. Olsen, T.L., Approximations for the Waiting Time Distribution in Polling Models with and without State-dependent Setups, Oper. Res. Lett., 2001, vol. 28, no. 3, pp. 113–123.

    Article  MATH  MathSciNet  Google Scholar 

  206. Olsen, T.L., Limit Theorems for Polling Models with Increasing Setups, Prob. Eng. Inf. Sci., 2001, vol. 15, no. 1, pp. 35–55.

    Article  MATH  MathSciNet  Google Scholar 

  207. Olsen, T.L. and van Der Mei, R.D., Polling Systems with Periodic Server Routing in Heavy Traffic: Distribution of the Delay, J. Appl. Prob., 2003, vol. 40, no. 2, pp. 305–326.

    Google Scholar 

  208. Olsen, T.L. and van Der Mei, R.D., Polling Systems with Periodic Server Routing in Heavy-Traffic: Renewal Arrivals, Oper. Res. Lett., 2005, vol. 33, no. 1, pp. 17–25.

    Article  MathSciNet  Google Scholar 

  209. Ozawa, T., Alternating Service Queues with Mixed Exhaustive and k-limited Service, Performance Evaluat., 1990, vol. 11, no. 3, pp. 165–175.

    MathSciNet  Google Scholar 

  210. Park, B.U., Ryu, W., Kim, D.-U., Lee, B.L., and Chung, J.-W., Two Priority Class Polling Systems with Batch Poisson Arrivals, Korean Commun. Stat., 1999, vol. 6, no. 3, pp. 881–891.

    Google Scholar 

  211. Peköz, E., More on Using Forced to Idle Time to Improve Performance in Polling Models, Prob. Eng. Inf. Sci., 1999, vol. 13, no. 4, pp. 489–496.

    Article  MATH  Google Scholar 

  212. Qiao, D., Choi, S., Soomoro, A., and Shin, K.G., Energy-efficient PCF Operation of IEEE 802.11a Wireless LAN, Proc. INFO COM 2002, New York, June 2002.

  213. Reiman, M. and Wein, L., Dynamic Scheduling of a Two-class Queue with Setups, Oper. Res., 1998, vol. 46, no. 4, pp. 532–547.

    MathSciNet  Google Scholar 

  214. Reiman, M. and Wein, L., Heavy Traffic Analysis of Polling Systems in Tandem, Oper. Res., 1999, vol. 47, no. 4, pp. 524–534.

    MathSciNet  Google Scholar 

  215. Resing, J.A.C., Polling Systems and Multitype Branching Processes, Queuing Syst., 1993, vol. 13, no. 4, pp. 409–426.

    MATH  MathSciNet  Google Scholar 

  216. Rubin, I. and Tsai, Z., Performance of Token Schemes Supporting Delay Constrained Priority Traffic Streams, IEEE Trans. Commun., 1990, vol. 38, no. 11, pp. 1994–2003.

    Google Scholar 

  217. Rykov, V.V., Monotone Control of Queuing Systems with Heterogeneous Servers, Queuing Syst., 2001, vol. 37, no. 4, pp. 391–403.

    MATH  MathSciNet  Google Scholar 

  218. Ryu, W., Jun, K.P., Kim, D.W., and Park, B.U., Waiting Times in Priority Polling Systems with Batch Poisson Arrivals, Korean Commun. Stat., 1998, vol. 5, no. 3, pp. 809–817.

    Google Scholar 

  219. Sarkar, D., Zangwill, W.I., Variance Effects in Cyclic Production Systems, Manag. Sci., 1991, vol. 37, no. 4, pp. 444–453.

    Google Scholar 

  220. Schassberger, R., Stability of Polling Networks with State-dependent Server Routing, Prob. Eng. Inf. Sci., 1995, vol. 9, no. 4, pp. 539–550.

    MathSciNet  Google Scholar 

  221. Sharafali, M., Co, H.C., and Goh, M., Production Scheduling in a Flexible Manufacturing System under Random Demand, Eur. J. Oper. Res., 2004, vol. 158, no. 1, pp. 89–102.

    Article  MathSciNet  Google Scholar 

  222. Sharma, V., Stability and Continuity of Polling Systems, Queuing Syst., 1994, vol. 16, no. 1–2, pp. 115–137.

    MATH  Google Scholar 

  223. Shimogawa, S. and Takahashi, T., A Note on the Pseudo-conservation Law for a Multi-queue with Local Priority, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 145–151.

    MathSciNet  Google Scholar 

  224. Shiozawa, Y., Takine, T., Takahashi, Y., and Hasegawa, T., Analysis of a Polling System with Correlated Input, Computer Networks ISDN Syst., 1990, vol. 20, no. 1–5, pp. 297–308.

    Google Scholar 

  225. Sidi, M., Levy, H., and Fuhrmann, S.W., A Queuing Network with a Single Cyclically Roving Server, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 121–144.

    MathSciNet  Google Scholar 

  226. Singh, M.P. and Srinivasan, M.M., Exact Analysis of the State Dependent Polling Model, Queuing Syst., 2002, vol. 41, no. 4, pp. 371–399.

    MathSciNet  Google Scholar 

  227. Srinivasan, M.M., Nondeterministic Polling Systems, Manag. Sci., 1991, vol. 37, no. 6, pp. 667–681.

    MATH  Google Scholar 

  228. Srinivasan, M.M., Niu, S.-C., and Cooper, R.B., Relating Polling Models with Nonzero Switchover Times, Queuing Syst., 1995, vol. 19, pp. 149–168.

    MathSciNet  Google Scholar 

  229. Stavrakakis, I. and Tsakiridou, S., Study of a Class of Partially Ordered Service Strategies for a System of Two Discrete-time Queues, Performance Evaluat., 1997, vol. 29, no. 1, pp. 15–33.

    Google Scholar 

  230. Suk, J.B. and Cassandras, C.G., Optimal Scheduling of Two Competing Queues with Blocking, IEEE Trans. Automat. Control, 1991, vol. 36, no. 9, pp. 1086–1091.

    Article  MathSciNet  Google Scholar 

  231. Suzuki, S. and Yamashita, H., Mean Waiting Times of the Alternating Traffic Starting Delays, J. Oper. Res. Soc. Japan, 1998, vol. 41, no. 3, pp. 442–454.

    MathSciNet  Google Scholar 

  232. Takagi, H., Analysis and Applications of Polling Models, in Performance Evaluation: Origins and Directions. Lecture Notes Comput. Sci., Haring, G., Lindemann, Ch., and Reiser, M., Eds., 2000, vol. 1769, pp. 423–442.

  233. Takagi, H., Analysis of an M/G/1//N Queue with Multiple Server Vacations, and Its Application to a Polling Model, J. Oper. Res. Soc. Japan, 1992, vol. 35, pp. 300–315.

    MATH  MathSciNet  Google Scholar 

  234. Takagi, H., Analysis of Polling Systems, Cambridge: MIT Press, 1986.

    Google Scholar 

  235. Takagi, H., Applications of Polling Models to Computer Networks, Comput. Networks ISDN Syst., 1991, vol. 22, no. 3, pp. 193–211.

    Google Scholar 

  236. Takagi, H., Queuing Analysis of Polling Systems, ACM Comput. Surveys, 1988, vol. 20, no. 1, pp. 5–28.

    Article  MATH  MathSciNet  Google Scholar 

  237. Takagi, H., Queuing Analysis of Polling Models: An Update, in Stochastic Analysis of Computer and Communication Systems, Takagi, H., Ed., Amsterdam: North-Holland, 1990, pp. 267–318.

    Google Scholar 

  238. Takagi, H., Queuing Analysis of Polling Models: Progress in 1990–1994, in Frontiers in Queuing, Dshalalow, J.H., Ed., Boca Raton: CRC, 1997, pp. 119–146.

    Google Scholar 

  239. Takahashi, Y., Fujimoto, K., and Makimoto, N., Geometric Decay of the Steady-state Probabilities in a Quasi-birth-and-death Process with a Countable Number of Phases, Commun. Stat.: Stochastic Models, 2001, vol. 17, no. 1, pp. 1–24.

    MathSciNet  Google Scholar 

  240. Takahashi, Y. and Kumar, B.K., Pseudo-conservation Law for Discrete-time Multi-queue System with Priority Disciplines, J. Oper. Res. Soc. Japan, 1995, vol. 38, no. 4, pp. 450–466.

    MathSciNet  Google Scholar 

  241. Takine, T. and Hasewaga, T., A Cyclic-Service Finite Source Model with Round-robin Scheduling, Queuing Syst., 1992, vol. 11, no. 1–2, pp. 91–108.

    Google Scholar 

  242. Takine, T. and Hasewaga, T., Average Waiting Time of a Symmetrical Polling System under Bernoulli Scheduling, Oper. Res. Lett., 1991, vol. 10, no. 9, pp. 535–539.

    Article  MathSciNet  Google Scholar 

  243. Takine, T., Takagi, H., and Hasegawa, T., Sojourn Times in Vacation and Polling Systems with Bernoulli Feedback, J. Appl. Prob., 1991, vol. 28, no. 2, pp. 422–432.

    MathSciNet  Google Scholar 

  244. Takine, T., Takagi, H., Takahashi, Y., and Hasegawa, T., Analysis of Asymmetric Single-buffer Polling and Priority Systems without Switchover Times, Performance Evaluat., 1990, vol. 11, no. 4, pp. 253–264.

    MathSciNet  Google Scholar 

  245. Takine, T., Takahashi, Y., and Hasegawa, T., Modeling and Analysis of a Single-buffer Polling System Interconnected with External Networks, INFOR, 1990, vol. 28, no. 3, pp. 166–177.

    Google Scholar 

  246. Tassiulas, L. and Ephremides, A., Dynamic Server Allocation to Parallel Queues with Randomly Varying Connectivity, IEEE Trans. Inf. Theory, 1993, vol. 39, no. 2, pp. 466–478.

    Article  MathSciNet  Google Scholar 

  247. Tedijanto, T.E., Exact Results for the Cyclic-service Queue with a Bernoulli Schedule, Performance Evaluat., 1990, vol. 11, no. 2, pp. 107–115.

    MathSciNet  Google Scholar 

  248. Tran-Gia, P., Analysis of Polling Systems with General Input Process and Finite Capacity, IEEE Trans. Commun., 1992, vol. 40, no. 2, pp. 337–344.

    Article  Google Scholar 

  249. Tseng, K.H. and Hsiao, M.-T.T., Optimal Control of Arrivals to Token Ring Networks with Exhaustive Service Discipline, Oper. Res., 1995, vol. 43, no. 1, pp. 89–101.

    Google Scholar 

  250. van der Heijden, M.C., Harten, A., and Ebben, M.J.R., Waiting Times at Periodically Switched Oneway Traffic Lanes—A Periodic, Two-queue Polling System with Random Setup Times, Prob. Eng. Inf. Sci., 2001, vol. 15, no. 4, pp. 495–517.

    Google Scholar 

  251. van der Mei, R.D., Delay in Polling Systems with Large Switch-over Times, J. Appl. Prob., 1999, vol. 36, no. 1, pp. 232–243.

    MATH  Google Scholar 

  252. van der Mei, R.D., Distribution of the Delay in Polling Systems in Heavy Traffic, Performance Evaluat., 1999, vol. 38, no. 2, pp. 133–148.

    MATH  Google Scholar 

  253. van der Mei, R.D., Polling Systems in Heavy Traffic: Higher Moments of the Delay, Queuing Syst., 1999, vol. 31, no. 3–4, pp. 265–294.

    MATH  Google Scholar 

  254. van der Mei, R.D., Polling Systems with Periodic Server Routing in Heavy Traffic, Commun. Stat.: Stochastic Models, 1999, vol. 15, no. 2, pp. 273–297.

    MATH  Google Scholar 

  255. van der Mei, R.D., Polling Systems with Switch-over Times under Heavy Load: Moments of the Delay, Queuing Syst., 2000, vol. 36, no. 4, pp. 381–404.

    MATH  Google Scholar 

  256. van der Mei, R.D., Waiting-time Distributions in Polling Systems with Simultaneous Batch Arrivals, Ann. Oper. Res., 2002, vol. 113, no. 1–4, pp. 155–173.

    MATH  MathSciNet  Google Scholar 

  257. van der Mei, R.D. and Borst, S.C., Analysis of Multiple-server Polling Systems by Means of the Power-series Algorithm, Commun. Stat.: Stochastic Models, 1997, vol. 13, no. 2, pp. 339–369.

    Google Scholar 

  258. van der Mei, R.D. and Levy, H., Expected Delay Analysis of Polling Systems in Heavy Traffic, Advances Appl. Prob., 1998, vol. 30, no. 2, pp. 586–602.

    Google Scholar 

  259. van der Mei, R.D. and Levy, H., Polling Systems in Heavy Traffic: Exhaustiveness of Service Policies, Queuing Syst., 1997, vol. 27, no. 3–4, pp. 227–250.

    Google Scholar 

  260. van der Wal, J. and Yechiali, U., Dynamic Visit-order Rules for Batch-service Polling, Prob. Eng. Inf. Sci., 2003, vol. 17, no. 3, pp. 351–367.

    Google Scholar 

  261. van Mieghem, J.A., Dynamic Scheduling with Convex Delay Costs: The Generalized Rule, Ann. Appl. Prob., 1995, vol. 5, no. 3, pp. 809–833.

    MATH  Google Scholar 

  262. van Oyen, M.P., Monotonicity of Optimal Performance Measures for Polling Systems, Prob. Eng. Inf. Sci., 1997, vol. 11, no. 2, pp. 219–228.

    Google Scholar 

  263. van Oyen, M.P., and Teneketzis, D., Optimal Batch Service of a Polling System under Partial Information, Zeitschrift Oper. Res., 1996, vol. 44, no. 3, pp. 401–419.

    Google Scholar 

  264. Vishnevsky, V.M. and Lyakhov, A.I., Adaptive Features of IEEE 802.11 Protocol: Utilization, Tuning and Modifications, Proc. of 8th HP-OVUA Conf., Berlin, June 2001.

  265. Vishnevsky, V.M., Lyakhov, A.I., and Bakanov, A.S., Method for Performance Evaluation of Wireless Networks with Centralized Control, Proc. Int. Conf. “Distributed Computer Communication Networks (Theory and Applications)” (DCNN’99), Tel-Aviv, Israel, November 9–13, 1999, pp. 189–194.

  266. Vishnevsky, V.M., Lyakhov, A.I., and Guzakov, N.N., An Adaptive Polling Strategy for IEEE 802.11 PCF, Proc. 7th Int. Symp. on Wireless Personal Multimedia Communications (WPMC’04), Abano Terme, Italy, September 12–15, 2004, vol. 1, pp. 87–91.

  267. Weststrate, J.A. and van der Mei, R.D., Waiting Times in a Two-queue Model with Exhaustive and Bernoulli Service, Zeitschrift für Operations Research (ZOR)—Math. Methods Oper. Res., 1994, vol. 40, no. 3, pp. 289–303.

    Google Scholar 

  268. Xia, C.H., Michailidis, G., Bambos, N., and Glynn, P.W., Optimal Control of Parallel Queues with Batch Service, Prob. Eng. Inf. Sci., 2002, vol. 16, no. 3, pp. 289–307.

    Article  MathSciNet  Google Scholar 

  269. Yechiali, U., Analysis and Control of Polling Systems, in Performance Evaluation of Computer and Communication Systems, Donatiello, L. and Nelson, R., Eds., Berlin: Springer, 1993, pp. 630–650.

    Google Scholar 

  270. Yechiali, U. and Armony, R., Polling Systems with Permanent and Transient Customers, Commun. Stat.: Stochastic Models, 1999, vol. 15, no. 3, pp. 395–427.

    MathSciNet  Google Scholar 

  271. Ziouva, E. and Antonakopoulos, T., Improved IEEE 802.11 PCF Performance Using Silence Detection and Cyclic Shift on Stations Polling, IEE Proc. Commun., 2003, vol. 150, no. 1, pp. 45–51.

    Article  Google Scholar 

  272. Ziouva, E. and Antonakopoulos, T., Efficient Voice Communications over IEEE802.11 WLANs Using Improved PCF Procedures, Proc. INC, Plymouth, 2002/2007.

  273. Ziouva, E. and Antonakopoulos, T., Improved IEEE802.11 PCF Performance Using Silence Detection and Cyclic Shift on Stations Polling, IEE Proc. Commun., 2003, vol. 150, no. 1, pp. 45–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Vishnevskii, O.V. Semenova, 2006, published in Avtomatika i Telemekhanika, 2006, No. 2, pp. 3–56.

This paper was recommended for publication by V.V. Rykov, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishnevskii, V.M., Semenova, O.V. Mathematical methods to study the polling systems. Autom Remote Control 67, 173–220 (2006). https://doi.org/10.1134/S0005117906020019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117906020019

PACS number

Navigation