Skip to main content
Log in

Obtaining Analogues of Fermented Milk Products from Seed Meal Using New Strains of Lactic Acid Bacteria

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A method has been developed for producing analogs of fermented milk drinks from pumpkin seed meal, which is a massive waste product from oilseed production, using new strains of lactic acid bacteria (LAB) isolated from different samples of kumiss. Based on the results of screening 50 LAB isolates capable of fermenting milk and aqueous meal extracts in a wide pH range, three strains with the best growth characteristics were selected. These strains were identified as representatives of the genus Lacticaseibacillus, most closely related to L. rhamnosus and L. casei (with 99.93 and 99.65% similarity in 16S rRNA gene sequences). An optimal scheme for producing drinks has been selected, including grinding meal, optimized extraction with alkaline solutions, heat treatment of the extract to remove foreign microflora, introduction of the inoculum (3–5% vol/vol) of new LAB strains, and fermentation at 37oС for ten hours. Compared with the fermented milk product obtained by fermenting milk with the same microorganisms, the drink made from meal extracts was distinguished by the absence of lactose and cholesterol, and increased content of unsaturated fatty acids (2.3 times) and protein (1.7 times), and the presence of essential amino acids in proteins. Thus, pumpkin seed meal, which is still used ineffectively, is a good basis for obtaining analogs of fermented milk products with beneficial properties. The developed method for producing lacto-fermented drinks can be adapted for processing other types of meals and cakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Silva, A.R., Silva, M.M., and Ribeiro, B.D., Food Res. Int., 2020, vol. 131, no. 1, p. 108972. https://doi.org/10.1016/j.foodres.2019.108972

    Article  CAS  PubMed  Google Scholar 

  2. Vanga, S.K. and Raghavan, V., J. Food Sci. Technol., 2018, vol. 55, no. 1, pp. 10–20.

    Article  CAS  PubMed  Google Scholar 

  3. Kundu, P., Dhankhar, J., and Sharma, A., Curr. Res. Nutr. Food Sci. J., 2018, vol. 6, no. 1, pp. 203–210.

    Article  Google Scholar 

  4. Mortas, M., Besir, A., Tok, Z., Keles, M., and Yazici, F., Plant Foods Hum. Nutr., 2023, vol. 78, pp. 358–365.

    Article  CAS  PubMed  Google Scholar 

  5. Bastıoğlu, A.Z., Tomruk, D., Koç, M., and Ertekin, F.K., J. Food Sci. Technol., 2016, vol. 53, no. 5, pp. 2396–2404.

    Article  Google Scholar 

  6. Makinen, O.E., Wanhalinna, V., Zannini, E., and Arendt, E.K., Crit. Rev. Food Sci. Nutr., 2016, vol. 56, no. 3, pp. P. 339–349.

  7. Ma, W., Zhang, C., Kong, X., Li, X., Chen, Y., and Hua, Y., Food Biosci., A, 2021, vol. 44, p. 101416. https://doi.org/10.1016/j.fbio.2021.101416

  8. Ahmadian-Kouchaksaraei, Z., Mohammad, M.V., Varidi, J., and Pourazarang, H., LWT—Food Sci. Technol., 2014, vol. 57, no. 1, pp. 299–305.

    Article  CAS  Google Scholar 

  9. Hickisch, A., Beer, R., Vogel, R.F., and Toelstede, S., Food Res. Int., vol. 84, pp. 180–188.

  10. Garro, M.S., de Valdez, G.F., and de Giori, G.S., Food Microbiol., vol. 21, no. 5, pp. 511–518.

  11. Vlaicu, P.A. and Panaite, T.D., Anim. Biosci., 2022, vol. 35, no. 2, pp. 236–246.

    Article  CAS  PubMed  Google Scholar 

  12. Valdez-Arjona, L.P. and Ramirez-Mella, M., Animals (Basel), 2019, vol. 9, no. 10, p. 769. https://doi.org/10.3390/ani9100769

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ulanova, R. and Kravchenko, I., Int. J. Eng. Sci. Innov. Technol., 2013, vol. 2, no. 6, pp. 618–624.

    Google Scholar 

  14. Ulanova, R.V., Kravchenko, I.K., Gorelova, O.P., and Nikolaeva, O.S., RF Patent No. 2557404, 2015.

  15. Afzaal, M., Saeed, F., Anjum, F., Waris, N., Husaain, M., Ikram, A., et al., Food Sci. Nutr., 2021, vol. 9, no. 11, pp. 6421–6428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang, H., Ma, H., Hou, Q., Li, W., Xu, H., Liu, W., and Menghe, B., BMC Microbiol., 2020, vol. 20, no. 1, pp. 1–11.

    Article  Google Scholar 

  17. Meng, Y., Chen, X., Sun, Z., Li, Y., Chen, D., Fang, S., and Chen, J., LWT, 2021, vol. 135, p. 110049. https://doi.org/10.1016/j.lwt.2020.110049

    Article  CAS  Google Scholar 

  18. Filippova, S.N., Surgucheva, N.A., Kolganova, T.V., Cherbunina, M.Yu., Brushkov, A.V., Mulyukin, A.L., and Gal’chenko, V.F., Biol. Bull. (Moscow), 2019, vol. 46, no. 3, pp. 234–241.

    Article  Google Scholar 

  19. Ostroumov, L.A. and Gavrilov, V.G., Biotransformation of lactose by β-galactosidase enzyme preparations, Tekhn. Tekhnol. Pishch. Proizv., 2013, no. 1, pp. 26–30.

  20. McCleary, B.V., J. AOAC Int., 2019, vol. 102, no. 1, pp. 196–207.

    Article  CAS  Google Scholar 

  21. Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M., Harris, H.M., Mattarelli, P., et al., Int. J. Syst. Evol. Microbiol., 2020, vol. 70, no. 4, pp. 2782–2858.

    Article  CAS  PubMed  Google Scholar 

  22. Śliżewska, K. and Chlebicz-Wójcik, A., Biology (Basel), 2020, vol. 9, no. 12, p. 423. https://doi.org/10.3390/biology9120423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sawatari, Y. and Yokota, A., Appl. Environ. Microbiol., 2007, vol. 73, no. 12, pp. 3909–3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kluczkovski, A., Lima, N., and Oliveira, M.K., J. Food Proc. Preserv., 2017, vol. 41, no. 5, p. 13147. https://doi.org/10.1111/jfpp.13147

    Article  CAS  Google Scholar 

  25. Jiménez-Martínez, C., Hernández-Sánchez, H., and Dávila-Ortiz, G., J. Sci. Food Agricult., vol. 83, no. 6, pp. 515–522.

  26. Ulanova, R.V., Nikolaev, Yu.A., Kolpakova, V.V., Galuza, O.A., and Sinel’nikov, A.V., RF Patent No. RU2784723.25, 2022.

  27. Silva, D., Nunes, P., Melo, J., and Quintas, C., AIMS Microbiol., 2022, vol. 8, no. 1, pp. 42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shahein, M.R., Atwaa, E.S.H., Alrashdi, B.M., Ramadan, M.F., Abd El-Sattar, E.S., Siam, A.A.H., et al., Fermentation, 2022, vol. 8, no. 5, p. 223. https://doi.org/10.1016/j.fbio.2021.101416

    Article  CAS  Google Scholar 

  29. Vlaicu, P.A. and Panaite, T.D., Anim. Biosci., 2022, vol. 35, no. 2, pp. 236–246.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of State Assignment no. 122040800164-6 of the Federal Research Center of Biotechnology, Russian Academy of Sciences, and Agreement no. 075-15-2021-1051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sinelnikov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Mittova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinelnikov, A.V., Kolganova, T.V. & Ulanova, R.V. Obtaining Analogues of Fermented Milk Products from Seed Meal Using New Strains of Lactic Acid Bacteria. Appl Biochem Microbiol 60, 476–482 (2024). https://doi.org/10.1134/S0003683824603664

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824603664

Keywords:

Navigation