Skip to main content
Log in

Recombinant Chymotrypsin-like Peptidase from Tenebrio molitor with a Non-Canonical Substrate-Binding Site

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

We characterized an alkaline chymotrypsin-like serine peptidase from the yellow mealworm Te-nebrio molitor with a non-canonical substrate-binding subsite for its possible application as a component (an additive) in various biological products. The enzyme was obtained as a recombinant preparation. Purification was carried out using affinity chromatography on Ni2+-NTA agarose. The specificity constants (kcat/KM) for the chymotrypsin substrates, Glp-AAF-pNA, Suc-AAPF-pNA, and Ac-Y-pNA, were 7, 4.2, and 0.9 (µM min)–1, respectively. The optimum of the proteolytic activity was observed at pH 9.0. The enzyme was stable in the alkaline pH range, and in the presence of BSA, also in the acidic region. Peptidase was inhi-bited by synthetic inhibitors such as PMSF, TPCK, and chymostatin, while EDTA, E-64, and pepstatin had no effect on the enzyme activity. The purified enzyme showed high stability over time in the presence of BSA. The short life cycle of the insect and the production of a large number of peptidases in the midgut with high catalytic activity and stability can make T. molitor an excellent alternative source of industrially important enzymes for application as components (additives) in various biological products (e.g., stain removers, detergents, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. de Souza, A.N., Martins, M.L., and Braz, J., Microbiology, 2001, vol. 32, no. 4, pp. 271–275. https://doi.org/10.1590/S1517-83822001000400003

    Article  Google Scholar 

  2. Zambare, V.P., Nilegaonkar, S.S., and Kanekar, P.P., World J. Microbiol. Biotechnol., 2007, vol. 23, pp. 1569–1574. https://doi.org/10.1007/s11274-007-9402-y

    Article  CAS  Google Scholar 

  3. Abidi, F., Limam, F., and Nejib, M.M., Process Biochem., 2008, vol. 43, no. 11, pp. 1202–1208. https://doi.org/10.1016/j.procbio.2008.06.018

    Article  CAS  Google Scholar 

  4. Kumar, C.G. and Takagi, H., Biotechnol. Adv., 1999, vol. 17, no. 7, pp. 561–594. https://doi.org/10.1016/s0734-9750(99)00027-0

    Article  CAS  PubMed  Google Scholar 

  5. Singh, J., Vohra, R., and Sahoo, D., Biotechnol. Lett., 1999, vol. 21, pp. 921–924. https://doi.org/10.1023/A:1005502824637

    Article  CAS  Google Scholar 

  6. Anwar, A. and Saleemuddin, M., Arch. Insect. Biochem. Physiol., 2002, vol. 51, no. 1, pp. 1–12. https://doi.org/10.1002/arch.10046

    Article  CAS  PubMed  Google Scholar 

  7. Vinokurov, K.S., Elpidina, E.N., Oppert, B., Prabhakar, S., Zhuzhikov, D.P., Dunaevsky, Y.E., and Belozersky, M.A., Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2006, vol. 145, no. 2, pp. 138–146. https://doi.org/10.1016/j.cbpb.2006.05.004

    Article  CAS  Google Scholar 

  8. Sanatan, P.T., Lomate, P.R., Giri, A.P., and Hivrale, V.K., BMC Biochem., 2013, vol. 14. https://doi.org/10.1186/1471-2091-14-32

  9. Sharifi, M., Chitgar, M.G., Ghadamyari, M.,and Ajamhasani, M., Rom. J. Biochem., 2012, vol. 49, no. 1, pp. 33–47.

    CAS  Google Scholar 

  10. Mahdavi, A., Ghadamyari, M., Sajedi, R.H., Sharifi, M., and Kouchaki, B., J. Insect Sci., 2013, vol. 13. https://doi.org/10.1673/031.013.8101

  11. Zou, Z., Lopez, D.L., Kanost, M.R., Evans, J.D., and Jiang, H., Insect Mol. Biol., 2006, vol. 15, no. 5, pp. 603–614. https://doi.org/10.1111/j.1365-2583.2006.00684.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choo, Y.M., Lee, K.S., Yoon, H.J., Lee, S.B., Kim, J.H., Sohn, H.D., and Jin, B.R., Eur. J. Entomol., 2007, vol. 104, no. 1, pp. 1–7. https://doi.org/10.14411/eje.2007.001

    Article  CAS  Google Scholar 

  13. Jiang, H., Vilcinskas, A., and Kanost, M.R., Adv. Exp. Med. Biol., 2010, vol. 708, pp. 181–204. https://doi.org/10.1007/978-1-4419-8059-5_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanost, M.R. and Jiang, H., Curr. Opin. Insect Sci., 2015, vol. 11, pp. 47–55. https://doi.org/10.1016/j.cois.2015.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao, X. and Jiang, H., Insect Biochem. Mol. Biol., 2018, vol. 103, pp. 53–69. https://doi.org/10.1016/j.ibmb.2018.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao, X., Gulati, M., and Jiang, H., Insect Biochem. Mol. Biol., 2017, vol. 88, pp. 48–62. https://doi.org/10.1016/j.ibmb.2017.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin, H., Xia, X., Yu, L., Vasseur, L., Gurr, G.M., Yao, F., Yang, G., and You, M., BMC Genomics, 2015, vol. 16, p. 1054. https://doi.org/10.1186/s12864-015-2243-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elpidina, E.N., Tsybina, T.A., Dunaevsky, Y.E., Belozersky, M.A., Zhuzhikov, D.P., and Oppert, B., Biochimie, 2005, vol. 87, no. 8, pp. 771–779. https://doi.org/10.1016/j.biochi.2005.02.013

    Article  CAS  PubMed  Google Scholar 

  19. Sato, P.M., Lopes, A.R., Juliano, L., Juliano, M.A., and Terra, W.R., Insect Biochem. Mol. Biol., 2008, vol. 38, no. 6, pp. 628–633. https://doi.org/10.1016/j.ibmb.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  20. Perona, J.J., Tsu, C.A., Craik, C.S., and Fletterick, R.J., Biochemistry, 1997, vol. 36, no. 18, pp. 5381–5392. https://doi.org/10.1021/bi9617522

    Article  CAS  PubMed  Google Scholar 

  21. Bown, D.P., Wilkinson, H.S., and Gatehouse, J.A., Insect Biochem. Mol. Biol., 1997, vol. 27, no. 7, pp. 625–638. https://doi.org/10.1016/s0965-1748(97)00043-x

    Article  CAS  PubMed  Google Scholar 

  22. Tsu, C.A., Perona, J.J., Schellenberger, V., Turck, C.W., and Craik, C.S., J. Biol. Chem., 1994, vol. 269, no. 30, pp. 19565–19572.

    Article  CAS  PubMed  Google Scholar 

  23. Tsu, C.A. and Craik, C.S., J. Biol. Chem., 1996, vol. 271, no. 19, pp. 11563–11570. https://doi.org/10.1074/jbc.271.19.11563

    Article  CAS  PubMed  Google Scholar 

  24. Whitworth, S.T., Blum, M.S., and Travis, J., J. Biol. Chem., 1998, vol. 273, no. 23, pp. 14430–14434. https://doi.org/10.1074/jbc.273.23.14430

    Article  CAS  PubMed  Google Scholar 

  25. Houben–Weyl Methods of Organic Chemistry: Synthesis of Peptides and Peptidomimetics, Goodman, M., Toniolo, C., Moroder, L., and Felix, A., Stuttgart: Thieme, 2004, 4th ed., vol. E22a.

  26. Gorbunov, A.A., Akent’ev, F.I., Gubaidullin, I.I., Zhiganov, N.I., Tereshchenkova, V.F, Elpidina, E.N., and Kozlov, D.G., Biotekhnologiya, 2020, vol. 36, no. 6, pp. 136–145.

    Google Scholar 

  27. Frugoni, J.A.C., Gazz. Chem. Ital., 1957, vol. 87, pp. 403–407.

    CAS  Google Scholar 

  28. Elpidina, E.N., Semashko, T.A., Smirnova, Y.A., Dvoryakova, E.A., Dunaevsky, Y.E., Belozersky, M.A., et al., Anal. Biochem., 2019, vol. 567, pp. 45–50. https://doi.org/10.1016/j.ab.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  29. Krahn, J. and Stevens, F.C., Biochemistry, 1970, vol. 9, no. 13, pp. 2646–2652. https://doi.org/10.1021/bi00815a013

    Article  CAS  PubMed  Google Scholar 

  30. De Vonis Bidlingmeyer, U., Leary, T.R., and Laskowski, M., Jr., Biochemistry, 1972, vol. 11, no. 17, pp. 3303–3310. https://doi.org/10.1021/bi00767a028

    Article  CAS  PubMed  Google Scholar 

  31. Vinokurov, K.S., Elpidina, E.N., Oppert, B., Prabhakar, S., Zhuzhikov, D.P., Dunaevsky, Y.E., and Belozersky, M.A., Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2006, vol. 145, no. 2, pp. 126–137. https://doi.org/10.1016/j.cbpb.2006.05.005

    Article  CAS  Google Scholar 

  32. Zhu, Y.C. and Baker, J.E., Arch. Insect. Biochem. Physiol., 2000, vol. 43, no. 4, pp. 173–184. https://doi.org/10.1002/(SICI)1520-6327(200004)-43:4<173::AID-ARCH3>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  33. Mazumdar-Leighton, S. and Broadway, R.M., Insect Biochem. Mol. Biol., 2001, vol. 31, nos. 6–7, pp. 633–644. https://doi.org/10.1016/s0965-1748(00)00168-5

    Article  CAS  PubMed  Google Scholar 

  34. Herrero, S., Combes, E., Van Oers, M.M., Vlak, J.M., de Maagd, R.A., and Beekwilder, J., Insect Biochem. Mol. Biol., 2005, vol. 35, no. 10, pp. 1073–1082. https://doi.org/10.1016/j.ibmb.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  35. Tamaki, F.K., Padilha, M.H., Pimentel, A.C., Ribeiro, A.F., and Terra, W.R., Insect Biochem. Mol. Biol., 2012, vol. 42, no. 7, pp. 482–490. https://doi.org/10.1016/j.ibmb.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  36. Matsuoka, T., Kawashima, T., Nakamura, T., and Yabe, T., Biosci. Biotechnol. Biochem., 2017, vol. 81, no. 7, pp. 1401–1404. https://doi.org/10.1080/09168451.2017.1318698

    Article  CAS  PubMed  Google Scholar 

  37. Gráf, L., Szilágyi, L., and Venekei, I., Handbook of Proteolytic Enzymes, chapter 582: Chymotrypsin, Rawlings, N.D. and Salvesen, G., Eds., Academic, 2013, 3ed ed., pp. 2626–2633. https://doi.org/10.1016/B978-0-12-382219-2.00582-2

  38. Botos, I., Meyer, E., Nguyen, M., Swanson, S.M., Koomen, J.M., Russell, D.H, and Meyer, E.F., J. Mol. Biol., 2000, vol. 298, no. 5, pp. 895–901. https://doi.org/10.1006/jmbi.2000.3699

    Article  CAS  PubMed  Google Scholar 

  39. Perona, J.J. and Craik, C.S., Protein Sci., 1995, vol. 4, no. 3, pp. 337–360. https://doi.org/10.1002/pro.5560040301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors honor the memory of their colleague, Professor Irina Yuryevna Filippova, who directed and supervised this research until her untimely passing away.

Funding

This study was supported by the Russian Science Foundation, grant no. 22-24-00553, https://rscf.ru/project/22-24-00553/.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, E.N. Elpidina; Data curation, D.G. Kozlov; Formal analysis, Ya.E. Dunaevsky; Investigation, V.F. Tereshchenkova, N.I. Zhiganov, A.S. Gubaeva and F.I. Akentyev; Methodology, V.F. Tereshchenkova; Validation, M.A. Belozersky; Writing (original draft), V.F. Tereshchenkova; Writing (review and editing), Ya.E. Dunaevsky and E.N. Elpidina. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to E. N. Elpidina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenkova, V.F., Zhiganov, N.I., Gubaeva, A.S. et al. Recombinant Chymotrypsin-like Peptidase from Tenebrio molitor with a Non-Canonical Substrate-Binding Site. Appl Biochem Microbiol 60, 420–430 (2024). https://doi.org/10.1134/S0003683824603652

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824603652

Keywords:

Navigation