Skip to main content
Log in

Enzymatic Conversion of Wood Materials from the Pulp and Paper Industry

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The reactivity during enzymatic hydrolysis of eight industrially produced samples of pulps and semichemical pulps by enzyme preparations of glycosyl hydrolases B151 and F10 produced by a strain of the ascomycete fungus Penicillium verruculosum has been determined. It is shown for the first time that among fibrous pulps available on the market of pulp and paper industry in Russia, the highest level of yield of glucose from the initial wood during biocatalysis using cellulases and hemicellulases is characteristic of semichemical pulps obtained after green liquor cooking of hardwood. A high degree of enzymatic conversion of softwood bleached kraft pulp has been established, which in combination with the possibility of obtaining modified polysaccharide materials from non-hydrolysable residue makes this cellulosic substrate the most promising for the development of biological processes at pulp and paper industries. It is shown that drying of pulp negatively affects the efficiency of cellulose hydrolysis, while mechanical refining improves the performance of the enzymatic saccharification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Braghiroli, F.L. and Passarini, L., Curr. For. Rep., 2020, vol. 6, pp. 172–183. https://doi.org/10.1007/s40725-020-00112-9

    Article  Google Scholar 

  2. Gonçalves, M.C.P., Romanelli, J.P., Cansian, A.B.M., Pucci, E.F.Q., Guimaraes, J.R., Tardioli, P.W., and Saville, B.A., Ind. Crop. Prod., 2022, vol. 186, p. 115213. https://doi.org/10.1016/j.indcrop.2022.115213

    Article  CAS  Google Scholar 

  3. Semenova, M.V., Gusakov, A.V., Telitsin, V.D., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2021, vol. 57, no. 5, pp. 618–625. https://doi.org/10.1134/S0003683821050136

    Article  CAS  Google Scholar 

  4. Sinitsyn, A.P., Sinitsyna, O.A., Zorov, I.N., and Rozhkova, A.M., Appl. Biochem. Microbiol., 2020, vol. 56, no. 6, pp. 638–646. https://doi.org/10.1134/S0003683820060162

    Article  CAS  Google Scholar 

  5. Zhou, B., Wang, Y., Jiang, Z., Salam, A., and Li, K., J. Wood Chem. Technol., 2021, vol. 41, no. 4, pp. 150–159. https://doi.org/10.1080/02773813.2021.1938130

  6. Kumar, B. and Verma, P., Fuel, 2021, vol. 288, p. 119622. https://doi.org/10.1016/j.fuel.2020.119622

    Article  CAS  Google Scholar 

  7. Rabinovich, M.L., Cell. Chem. Tech., vol. 44, no. 4, pp. 173–186.

  8. Alvira, P., Tomas-Pejo, E., Ballesteros, M., and Negro, M.J., Bioresour. Technol., 2010, vol. 101, no. 13, pp. 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, J.Y. and Pan, X.J., Bioresour. Technol., vol. 101, no. 13, pp. 4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007

  10. Hendriks, A.T.W.M. and Zeeman, G., Bioresour. Technol., 2009, vol. 100, no. 1, pp. 10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  11. Kucharska, K., Rybarczyk, P., Holowacz, I., Lukajtis, R., Glinka, M., and Kaminski, M., Molecules, 2018, vol. 23, no. 11, p. 2937. https://doi.org/10.3390/molecules23112937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asada, C., Sasaki, C., Uto, Y., Sakafuji, J., and Nakamura, Y., Biochem. Eng. J., 2012, vol. 60, pp. 25–29. https://doi.org/10.1016/j.bej.2011.09.013

    Article  CAS  Google Scholar 

  13. Pielhop, T., Amgarten, J., von Rohr, P.R., and Studer, M.H., Biotechnol. Biofuels, 2016, vol. 9, no. 1, pp. 1–13. https://doi.org/10.1186/s13068-016-0567-1

    Article  CAS  Google Scholar 

  14. Domenech, P., Manzanares, P., Alvarez, C., Ballesteros, M., and Duque, A., Holzforschung, 2020, vol. 75, no. 3, pp. 250–259. https://doi.org/10.1515/hf-2020-0068

    Article  CAS  Google Scholar 

  15. Vaidya, A.A., Murton, K.D., Smith, D.A., and Dedual, G., Biomass Conv. Bioref., 2022, vol. 12, no. 11, pp. 5427–5442. https://doi.org/10.1007/s13399-022-02373-9

    Article  CAS  Google Scholar 

  16. Xu, X., Wang, K., Zhou, Y., Lai, C., Zhang, D., Xia, C., and Pugazhendhi, A., Fuel, 2023, vol. 338, p. 127361.https://doi.org/10.1016/j.fuel.2022.127361

    Article  CAS  Google Scholar 

  17. Zhao, X., Zhan, Y., Han, L., Sun, X., Zhang, T., and Zhao, Z., Processes, 2023, vol. 11, no. 4, p. 1293. https://doi.org/10.3390/pr11041293

    Article  CAS  Google Scholar 

  18. Yin, X., Wei, L., Pan, X., Liu, C., Jiang, J., and Wan, K., Front. Plant Sci., 2021, vol. 12, p. 670061. https://doi.org/10.3389/fpls.2021.670061

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moniruzzaman, M. and Goto, M., Appl. Ionic Liq. Biotechnol., 2019, pp. 61–77. https://doi.org/10.1007/10_2018_64

  20. Wu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., and Jin, Y., Biomass, 2023, vol. 3, no. 1, pp. 96–107. https://doi.org/10.3390/biomass3010007

    Article  CAS  Google Scholar 

  21. Przybysz Buzala, K., Kalinowska, H., Malachowska, E., Boruszewski, P., Krajewski, K., and Przybysz, P., Energies, 2019, vol. 12, no. 15, p. 2952. https://doi.org/10.3390/en12152952

    Article  CAS  Google Scholar 

  22. Cai, C., Zhang, C., Li, N., Liu, H., Xie, J., Lou, H., Pan, X., Zhu, J.Y., and Wang, F., Renew. Sust. Eng. Rev., 2023, vol. 183, p. 113445. https://doi.org/10.1016/j.rser.2023.113445

    Article  CAS  Google Scholar 

  23. Van Wyk, J.P.H., Biomass Bioeng., 1999, vol. 16, no. 3, pp. 239–242.

    Article  CAS  Google Scholar 

  24. Jin, Y., Jameel, H., Chang, H.M., and Phillips, R., J. Wood Chem. Technol., 2010, vol. 30, no. 1, pp. 86–104. https://doi.org/10.1080/02773810903578360

    Article  CAS  Google Scholar 

  25. Buzala, K., Przybysz, P., Rosicka-Kaczmarek, J., and Kalinowska, H., Cellulose, 2015, vol. 22, pp. 663–674. https://doi.org/10.1007/s10570-014-0522-x

    Article  CAS  Google Scholar 

  26. Dotsenko, G.S., Chekushina, A.V., Kondrat’eva, E.G., Pravil’nikov, A.G., Andrianov, R.M., Osipov, D.O., et al., Les. Vest., 2012, vol. 8, no. 91, pp. 129–135.

    Google Scholar 

  27. Sinitsyn, A.P., Sinitsyna, O.A., Zorov, I.N., and Rozhkova, A.M., Vestn. Mosk. Univ., Ser. 2: Khim., 2023, vol. 64, no. 4, pp. 312–333. https://doi.org/10.55959/MSU0579-9384-2-2023-64-4-312-333

    Article  CAS  Google Scholar 

  28. Novozhilov, E.V., Aksenov, A.S., Demidov, M.L., Chukhchin, D.G., Dotsenko, G.S., Osipov, D.O., and Sinitsyn, A.P., Katal. Prom-sti, 2014, vol. 4, pp. 74–80. https://doi.org/10.1134/S2070050414040138

    Article  Google Scholar 

  29. Novozhilov, E.V., Sinel’nikov, I.G., Aksenov, A.S., Chukhchin, D.G., Tyshkunova, I.V., Rozhkova, A.M., et al., Katal. Prom-sti, 2015, vol. 5, pp. 78–83. https://doi.org/10.18412/1816-0387-2015-5-78-83

    Article  CAS  Google Scholar 

  30. Aksenov, A.S., Tyshkunova, I.V., Poshina, D.N., Guryanova, A.A., Chukhchin, D.G., Sinelnikov, I.G., et al., Catalysts, 2020, vol. 10, p. 536. https://doi.org/10.3390/catal10050536

    Article  CAS  Google Scholar 

  31. Shevchenko, A.R., Mayorova, K.A., Chukhchin, D.G., Malkov, A.V., Toptunov, E.A., Telitsin, V.D., et al., Fermentation, 2023, vol. 9, p. 936. https://doi.org/10.3390/fermentation9110936

    Article  CAS  Google Scholar 

  32. Saini, J.K., Patel, A.K., Adsul, M., and Singhania, R.R., Renewable Energy, 2016, vol. 98, pp. 29–42. https://doi.org/10.1016/j.renene.2016.03.089

    Article  CAS  Google Scholar 

  33. Cai, C., Li, J., Hirth, K., Huber, G.W., Lou, H., and Zhu, J.Y., ChemSusChem, 2020, vol. 13, pp. 4649–4659. https://doi.org/10.1002/cssc.202001120

    Article  CAS  PubMed  Google Scholar 

  34. Brondi, M.G., Elias, A.M., Furlan, F.F., Giordano, R.C., and Farinas, C.S., Sci. Rep., vol. 10, p. 7367. https://doi.org/10.1038/s41598-020-64316-6

  35. Aldaeus, F., Larsson, K., Srndovic, J.S., Kubat, M., Karlstrom, K., Peciulyte, A., Olsson, L., and Larsson, P.T., Cellulose, 2015, vol. 22, pp. 3991–4002. https://doi.org/10.1007/s10570-015-0766-0

    Article  CAS  Google Scholar 

  36. Huang, C., Li, R., Tang, W., Zheng, Y., and Meng, X., Fermentation, 2022, vol. 8, p. 558. https://doi.org/10.3390/fermentation8100558

    Article  CAS  Google Scholar 

  37. Wang, Z.J., Lan, T.Q., and Zhu, J.Y., Biotech. Biofuels, 2013, vol. 6, p. 9. https://doi.org/10.1186/1754-6834-6-9

    Article  CAS  Google Scholar 

  38. Willfor, S., Pranovich, A., Tamminen, T., Puls, J., Laine, C., Suurnakki, A., Saake, B., Uotila, K., Simolin, H., Hemming, J., and Holmbom, B., Ind. Crops Prod, 2009, vol. 29, pp. 571–580. https://doi.org/10.1016/j.indcrop.2008.11.003

    Article  CAS  Google Scholar 

  39. Ghose, T.K., Pure Appl. Chem., 1987, vol. 59, pp. 257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  40. Nelson, N., J. Biol. Chem., 1944, vol. 153, no. 2, pp. 375–380. https://doi.org/10.1016/S0021-9258(18)71980-7

    Article  CAS  Google Scholar 

  41. Lowry, O.H., Roseborough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, pp. 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  42. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M., Bioresour. Technol., 2005, vol. 96, no. 6, pp. 673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  43. Sun, S., Sun, S., Cao, X., and Sun, R., Bioresour. Technol., 2016, vol. 199, pp. 49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  CAS  PubMed  Google Scholar 

  44. Khol’kin, Yu.I., Tekhnologiya gidroliznykh proizvodstv (Technology of Hydrolysis Industries), Moscow: Lesnaya prom-st’, 1989.

  45. Ek, M., Gellerstedt, G., and Henriksson, G., Pulping Chemistry and Technology, Ek, M., Gellerstedt, G., and Henriksson, G.R., Eds., Berlin: Walter de Gruyter GmbH, 2009, vol. 2.

    Book  Google Scholar 

  46. Mingazova, L.A., Kanarskii, A.V., Kryakunova, E.V., and Kanarskaya, Z.A., Lesn. Zh., 2020, vol. 2, no. 374, pp. 146–158.https://doi.org/10.37482/0536-1036-2020-2-146-158

  47. Novozhilov, E.V., Lesn. Zh., 1999, vol. 2, no. 3, pp. 180–188.

    Google Scholar 

  48. Ko, C.H., Chen, F.J., Lee, J.J., and Tzou, D.L.M., Cellulose, 2011, vol. 18, pp. 1043–1054. https://doi.org/10.1007/s10570-011-9534-y

    Article  CAS  Google Scholar 

  49. Laivins, G.V. and Scallan, A.M., Prod. Paper, 1993, vol. 2, pp. 1235–1260. https://doi.org/10.15376/frc.1993.2.1235

    Article  Google Scholar 

  50. Rebuzzi, F. and Evtuguin, D.V., Macromol. Symp., 2005, vol. 232, no. 1, pp. 121–128. https://doi.org/10.1002/masy.200551414

    Article  CAS  Google Scholar 

  51. Kamaya, Y., J. Ferm. Bioeng., 1996, vol. 82, pp. 549–553. https://doi.org/10.1016/S0922-338X(97)81250-0

    Article  CAS  Google Scholar 

  52. Garcia-Ubasart, J., Torres, A.L., Vila, C., Pastor, F.I.J., and Vidal, T., Ind. Crop. Prod., 2013, vol. 44, pp. 71–76. https://doi.org/10.1016/j.indcrop.2012.10.019

    Article  CAS  Google Scholar 

  53. Shevchenko, A.R., Tyshkunova, I.V., Chukhchin, D.G., Malkov, A.V., Toptunov, E.A., Telitsin, V.D., et al., Catalysts, 2023, vol. 13, no. 1, p. 103. https://doi.org/10.3390/catal13010103

    Article  CAS  Google Scholar 

  54. Mayorova, K., Aksenov, A., and Shevchenko, A., AIP Conf. Proc., 2023, vol. 2931, pp. 030005-1–030005-8. https://doi.org/10.1063/5.0178421

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the Center for Collective Use of Scientific Equipment “Arctic” of the Northern (Arctic) Federal University named after M.V. Lomonosov.

Funding

This study was supported by the Russian Science Foundation, project no. 22-24-20136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Aksenov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Bulaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, A.S., Sinelnikov, I.G., Shevchenko, A.R. et al. Enzymatic Conversion of Wood Materials from the Pulp and Paper Industry. Appl Biochem Microbiol 60, 448–456 (2024). https://doi.org/10.1134/S0003683824603639

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824603639

Keywords:

Navigation