Skip to main content
Log in

The Diatom Nanofrustulum shiloi As a Promising Species in Modern Biotechnology

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The results of studies of an intensive culture of a new species of bentoplanktonic diatom N. shiloi (Lee, Reimer et McEnery) Round, Hallsteinsen et Paasche 1999 isolated from the Black Sea are presented. Detailed descriptions are provided of the methods used to isolate the species into an algologically pure culture and its morphological and taxonomic features under light and electron scanning microscopy. The biochemical and production characteristics were also studied including the ability of the strain to accumulate fucoxanthin (Fx) and polyunsaturated fatty acids (PUFA) in laboratory conditions. During the exponential growth phase, the specific culture growth rate was µ = 0.8 1/day, and the maximum productivity P = 0.46 g dry weight/(L day). The accumulation of PUFAs in the biomass of N. shiloi reached 67.39 mg/g dry weight of algae. The Fx concentration in the biomass at the beginning of the stationary growth phase was 10 mg/g dry weight. The fairly high rate of Fx biosynthesis in microalgae cells, as well as the composition of fatty acids of the Black Sea strain, makes it possible to classify N. shiloi as a promising object in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6. 
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Vázquez-Romero, B., Perales, J.A., Pereira, H., Barbosa, M., and Ruiz, J., Sci. Total. Environ, 2022, vol. 837, pp. 1–10. https://doi.org/10.1016/j.scitotenv.2022.155742

    Article  CAS  Google Scholar 

  2. Ahmed, S.F., Mofijur, M., Parisa, T.A., Islam, N., Kusumo, F., Inayat, A., et al., Chemosphere, 2022, vol. 286, pp. 1–14. https://doi.org/10.1016/j.chemosphere.2021.131656

    Article  CAS  Google Scholar 

  3. Maghzian, A., Aslani, A., and Zahedi, R., Energy Rep., 2022, vol. 8, no. 4, pp. 3337–3349. https://doi.org/10.1016/j.egyr.2022.02.125

    Article  Google Scholar 

  4. Revellame, E.D., Aguda, R., Chistoserdov, A., Fortela, D.L., Hernandez, R.A., and Zappi, M.E., Algal Res., vol. 55, no. 5, pp. 1–6. https://doi.org/10.1016/j.algal.2021.102258

  5. Wang, S., Verma, S.K., Said, I.H., Thomsen, L., Ullrich, M.S., and Kuhnert, N., Microb. Cell. Fact., 2018, vol. 17, no. 1, pp. 1–13. https://doi.org/10.1186/s12934-018-0957-0

    Article  CAS  Google Scholar 

  6. Supramaetakorn, W., Meksumpun, S., Ichimi, K., Thawonsode, N., and Veschasit, O.-I., J. Fish. Environ., 2019, vol. 43, no. 3, pp. 1–10.

    Google Scholar 

  7. Zhuze, A.P., Proshkina-Lavrenko, A.I., and Sheshukova, V.S., Diatomovyi analiz (Diatom Analysis), Proshkina-Lavrenko, A.I., Ed., Moscow: Gos. Izd. Geol. Lit., 1949, book 1, vol. 1.

  8. Kuczynska, P., Jemiola-Rzeminska, M., and Strzalka, K., Mar. Drugs, 2015, vol. 13, no. 9, pp. 5847–5881. https://doi.org/10.3390/md13095847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gevorgiz, R.G. and Zheleznova, S.N., Morsk. Biol. Zh., 2020, vol. 5, no. 1, pp. 12–19. https://doi.org/10.21072/mbj.2020.05.1.02

    Article  Google Scholar 

  10. Dang, N.P., Vasskog, T., Pandey, A., and Calay, R.K., Int. J. Biol. Ecol. Eng., 2022, vol. 16, no. 12, pp. 108–112.

    Google Scholar 

  11. Silva, B.F., Wendt, E.V., Castro, J.C., Oliveira, A.E., Carrim, A.J.I., Gonçalves, VieiraJ.D., et al., Algal Res., 2015, vol. 9, pp. 312–321.

    Article  Google Scholar 

  12. Jaramillo-Madrid, A.C., Ashworth, J., and Ralph, P.J., J. Mar. Sci. Eng., 2020, vol. 8, no. 2, pp. 1–14. https://doi.org/10.3390/jmse8020085

    Article  Google Scholar 

  13. Gevorgiz, R.G., Gureev, M.A., Zheleznova, S.N., Gureeva, E.V., and Nekhoroshev, M.V., Appl. Biochem. Microbiol., 2022, vol. 58, no. 3, pp. 261–268.

    Article  Google Scholar 

  14. Eilertsen, H.C., Eriksen, G.K., Bergum, J-S., Stromholt, J., Elvevoll, E., Eilertsen, K-E., et al., Appl. Sci., 2022, vol. 12, no. 6, pp. 1–35. https://doi.org/10.3390/app12063082

    Article  CAS  Google Scholar 

  15. Blaginina, A. and Ryabushko, L., Int. J. Algae, 2021, vol. 23, no. 3, pp. 247–256. https://doi.org/10.1615/InterJAlgae.v23.i3.40

    Article  Google Scholar 

  16. Round, F.E., Hallsteinsen, H., and Paasche, E., Diatom Res., 1999, vol. 14, no. 2, pp. 343–356. https://doi.org/10.1080/0269249X.1999.9705476

    Article  Google Scholar 

  17. Woelfel, J., Schoknecht, A., Schaub, I., Enke, N., Schumann, R., and Karsten, U., Phycology, 2014, vol. 53, no. 6, pp. 639–651.

    Article  Google Scholar 

  18. Sahin, M.S., Khazi, M.I., Demirel, Z., and Dalay, M.C., Biocatal. Agric. Biotechnol., 2019, vol. 17, pp. 390–398. https://doi.org/10.1016/j.bcab.2018.12.023

    Article  Google Scholar 

  19. Demirel, Z., Imamoglu, E., and Dalay, M.C., Braz. Arch. Biol. Technol., 2020a, vol. 63, no. 4, pp. 1–8. https://doi.org/10.1590/1678-4324-2020190201

    Article  CAS  Google Scholar 

  20. Grubisic, M., Santek, B., Zoric, Z., Cosic, Z., Vrana, I., Gasparovic, B., et al., Molecules, 2022, vol. 27, no. 4, pp. 1–27.

    Article  Google Scholar 

  21. Ryabushko, V.I., Zheleznova, S.N., and Nekhoroshev, M.V., Algologia, 2017, vol. 27, no. 1, pp. 15–21. https://doi.org/10.15407/alg27.01.015

    Article  Google Scholar 

  22. Bae, M., Kim, M.-B., Park, Y.-K., and Lee, J.-Y., Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2020, vol. 1865, no. 11, pp. 1–7. https://doi.org/10.1016/j.bbalip.2020.158618

    Article  CAS  Google Scholar 

  23. Ryabushko, L.I., Mikrofitobentos Chernogo morya (Microphytobenthos of the Black Sea), Gaevskaya, A.V., Ed., Sevastopol: EKOSI-Gidrofizika, 2013.

    Google Scholar 

  24. Guillard, R.R.L. and Ryther, J., Can. J. Microbiol., 1963, vol. 8, no. 2, pp. 229–239. https://doi.org/10.1139/m62-029

    Article  Google Scholar 

  25. Agatova, A.I., Arzhanova, N. V., Lapina, N.M., Naletova, I.A., and Torgunova, N.I., Rukovodstvo po sovremennym biokhimicheskim metodam issledovaniya vodnykh ekosistem, perspektivnykh dlya promysla i marikul’tury (Manual on Modern Biochemical Methods for the Study of Aquatic Ecosystems Promising for Fishing and Mariculture), Agatova, A.I., Ed., Moscow: VNIRO, 2004.

    Google Scholar 

  26. Hashimoto, T., Ozaki, Y., Taminato, M., Dass, S.K., Mizuno, M., Yoshimura, K., et al., Br. J. Nutr., 2009, vol. 102, no. 2, pp. 242–248. https://doi.org/10.1017/S0007114508199007

    Article  CAS  PubMed  Google Scholar 

  27. Kates, M., in Techniques of Lipidology. Isolation, Analysis and Identification of Lipids, Work, T.S., Work, E., Eds., Amsterdam;: North Holland Publ., 1972, vol. 3, part 2, pp. 347–390.

    Google Scholar 

  28. Sar, E.A. and Sunesen, I., Nova Hedwigia, 2003, vol. 77, nos. 3–4, pp. 399–406. https://doi.org/10.1127/0029-5035/2003/0077-0399

    Article  Google Scholar 

  29. Gevorgiz, R.G., Zheleznova, S.N., Zozulya, Yu.V., Uvarov, I.P., Repkov, A.P., and Lelekov, A.S., Aktual’nye voprosy biologicheskoi fiziki i khimii. BFFKh-2016 (Current Issues in Biological Physics and Chemistry. BFFH-201), Sevastopol, 2016, vol. 1, pp. 73–77.

  30. Naumov, I.V., Gevorgiz, R.G., Skripkin, S.G., Tintulova, M.V., Tsoy, M.A., and Sharifullin, B.R., Chem. Eng. Process., Process Intensif., 2023b, vol. 191, pp. 1–12. https://doi.org/j.cep.2023.109467

    Google Scholar 

  31. Lelekov, A.S., Gevorgiz, R.G., and Zhondareva, Ya.D., Appl. Biochem. Microbiol., 2016, vol. 52, no. 3, pp. 333–338. https://doi.org/10.7868/S0555109916030090

    Article  CAS  Google Scholar 

  32. Trenkenshu, R.P., Ekol. Morya, 2005, no. 67, pp. 98–110.

  33. Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., and Zhang, C., Mar. Drugs, 2013, vol. 11, no. 7, pp. 2667–2681. https://doi.org/10.3390/md11072667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Castro, AraujoS. and Tavano, GarciaV.M., Aquaculture, 2005, vol. 246, nos. 1–4, pp. 405–412. https://doi.org/10.1016/j.aquaculture.2005.02.051

    Article  CAS  Google Scholar 

  35. Li, H.-Y., Lu, Y., Zheng, J.-W., Yang, W.-D., and Liu, J.-S., Mar. Drugs, 2014, vol. 12, no. 1, pp. 153–166. https://doi.org/10.3390/md12010153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spilling, K., Seppälä, J., Schwenk, D., Rischer, H., and Tamminen, T., J. Appl. Phycol., 2021, vol. 33, pp. 1447–1455. https://doi.org/10.1007/s10811-021-02380-9

    Article  CAS  Google Scholar 

  37. Cointet, E., Wielgosz-Collin, G., Bougaran, G., Rabesaotra, V., Gonçalves, O., and Meleder, V., PLoS One, 2019, vol. 14, no. 11, pp. 1–28. https://doi.org/10.1371/journal.pone.0224701

    Article  CAS  Google Scholar 

  38. Sprynskyy, M., Monedeiro, F., Monedeiro-Milanowski, M., Nowak, Z., Krakowska-Sieprawska, A., Pomastowski, P., et al., Algal Res., vol. 62, no. h. 2022, pp. 1–30. https://doi.org/10.1016/j.algal.2021.102615

  39. Preston, M.R., Curr. Atheroscler. Rep., 2019, vol. 21, no. 1, pp. 1–11. https://doi.org/10.1007/s11883-019-0762-1

    Article  CAS  Google Scholar 

  40. Wang, H., Zhang, Y., Chen, L., Cheng, W., and Liu, T., Bioprocess Biosyst. Eng., 2018, vol. 41, no. 7, pp. 1061–1071. https://doi.org/10.1007/s00449-018-1935-y

    Article  CAS  PubMed  Google Scholar 

  41. Gladyshev, M.I., Zh. Sib. Fed. Univ., Ser.: Biol., 2012, vol. 5, no. 4, pp. 352–386.

    Google Scholar 

  42. Yang, R., Wei, D., and Xie, J., Crit. Rev. Biotechnol., 2020, vol. 40, no. 7, pp. 993–1009. https://doi.org/10.1080/07388551.2020.1805402

    Article  CAS  PubMed  Google Scholar 

  43. Gevorgiz, R.G., Gureev, M.A., Zheleznova, S.N., Gureeva, E.V., and Nechoroshev, M.V., Appl. Biochem. Microbiol., 2022, vol. 58, no. 3, pp. 261–268. https://doi.org/10.1134/S0003683822010033

    Article  Google Scholar 

  44. Erdogan, A., Demirel, Z., Dalay, M.C., and Eroglu, A.E., Turk. J. Fish. Aquat. Sci., 2016, vol. 16, no. 3, pp. 499–506. https://doi.org/10.4194/1303-2712-v16_3_01

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our gratitude to V.N. Lishaev for the assistance in obtaining SEM images.

Funding

This research received financial support within the governmental research assignments no. 023032700554-2-1.6.16. “Comprehensive study of the functioning mechanisms of biotechnological complexes with the aim of obtaining active substances from aquatic organisms”, with partial financial support from the Russian Science Foundation (project no. 19-19-00083).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization S.Z.; R.G., L.R.; microalgae sample processing, preparation of diatom samples for SEM and LM and obtaining images, A.B.; microalgae species identification, L.R., A.B.; Isolation and establishing monoculture, A.B.; data and biochemical analysis, S.Z., R.G. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. A. Blaginina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaginina, A.A., Zheleznova, S.N., Miroshnichenko, E.S. et al. The Diatom Nanofrustulum shiloi As a Promising Species in Modern Biotechnology. Appl Biochem Microbiol 60, 483–495 (2024). https://doi.org/10.1134/S0003683824603615

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824603615

Keywords:

Navigation