Skip to main content
Log in

Decolorization of Crystal Violet by a Mixed Culture under the Influence of Bioelectrochemical Stimulation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A significant variation in the relative representation of copies of bacterial genes of dye-decolorizing DyP peroxidases typical for the genus Shewanella and a number of other microorganisms was found in the bottom sediments of freshwater reservoirs. It was found that the specific rate of decolorization of crystal violet in a laboratory bioelectrochemical system by a mixed culture of bottom sediments, which showed the highest representation of DyP genes, depended on the method of electrical stimulation of the external circuit and the concentration of the dye. After an increase in the concentration of more than 20 microns, the maximum speed was achieved in the presence of an ionistor polarly connected to the external electrical circuit of the bioelectrochemical system and amounted to 3.23 ± 0.11 μM/h, while with the opposite polarity connection, a minimum value of 2.07 ± 0.08 μM/h was observed. In the case of an open circuit and a resistor, similar indicators occurred with 2.88 ± 0.09 and 2.67 ± 0.12 μM/h, respectively. When analyzing the decolorization products, a consistent decrease in the maxima of the absorption bands of the dye was noted, indicating its more complete degradation by the mixed culture. The results may be of interest for the development of methods to improve the efficiency of bioelectrochemical methods of environmental biotechnology by electrostimulation of the external circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Logan, B.E. and Regan, J.M., Trends Microbiol., 2006, vol. 14, no. 12, pp. 512–518.

    Article  CAS  PubMed  Google Scholar 

  2. Lan, J., Wen, F., Ren, Y., Liu, G., Jiang, Y., Wang, Z., and Zhu, X., Environ. Sci. Technol., 2023, vol. 16, p. 100278. https://doi.org/10.1016/j.ese.2023.100278

    Article  CAS  Google Scholar 

  3. Mohanakrishna, G., Al-Raoush, R.I., and Abu-Reesh, I.M., Biotechnol. Rep., 2020, vol. 27, p. e00478. https://doi.org/10.1016/j.btre.2020.e00478

    Article  Google Scholar 

  4. Wang, H., Xing, L., Zhang, H., Gui, C., Jin, S., Lin, H., Li, Q., and Cheng, C., Chem. Eng. J., 2021, vol. 419, p. 129600. https://doi.org/10.1016/j.cej.2021.129600

    Article  CAS  Google Scholar 

  5. Kondaveeti, S., Govindarajan, D., Mohanakrishna, G., Thatikayala, D., Abu-Reesh, I.M., Min, B., et al., Fuel, 2023, vol. 331, p. 125632. https://doi.org/10.1016/j.fuel.2022.125632

    Article  CAS  Google Scholar 

  6. Cabrera, J., Irfan, M., Dai, Y., Zhang, P., Zong, Y., and Liu, X., Chemosphere, 2021, vol. 285, p. 131428. https://doi.org/10.1016/j.chemosphere.2021.131428

    Article  CAS  PubMed  Google Scholar 

  7. Tanikkul, P. and Pisutpaisal, N., Int. J. Hydrog. Energy, 2018, vol. 43, no. 1, pp. 483–489.

    Article  CAS  Google Scholar 

  8. Corbella, C., Hartl, M., Fernandez-Gatell, M., and Puigagut, J., Sci. Total Environ., 2019, vol. 660, pp. 218–226.

    Article  CAS  PubMed  Google Scholar 

  9. Do, M.H., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Sharma, P., et al., Sci. Total Environ., 2021, vol. 795, p. 148755. https://doi.org/10.1016/j.scitotenv.2021.148755

    Article  CAS  PubMed  Google Scholar 

  10. Guo, F., Liu, Y., and Liu, H., Sci. Total Environ., 2021, vol. 753, p. 142244. https://doi.org/10.1016/j.scitotenv.2020.142244

    Article  CAS  PubMed  Google Scholar 

  11. Askari, A., Vahabzadeh, F., and Mardanpour, M.M., J. Clean. Prod., 2021, vol. 294, p. 126349. https://doi.org/10.1016/j.jclepro.2021.126349

    Article  CAS  Google Scholar 

  12. Gao, Y., Cai, T., Yin, J., Li, H., Liu, X., Lu, X., et al., Bioresour. Technol., 2023, vol. 376, p. 128835. https://doi.org/10.1016/j.biortech.2023.128835

    Article  CAS  PubMed  Google Scholar 

  13. Karyakin, A.A., Bioelectrochemistry, 2012, vol. 88, pp. 70–75. https://doi.org/10.1016/j.biortech.2023.128835

    Article  CAS  PubMed  Google Scholar 

  14. Gildemyn, S., Pant, D., Zengler, K., Logan, B.E., and Rabaey, K., Biotechnol. Adv., 2015, vol. 33, no. 6, pp. 736–744.

    Article  PubMed  Google Scholar 

  15. Kiely, P.D., Regan, J.M., and Logan, B.E., Curr. Opin. Biotechnol., 2011, vol. 22, no. 3, pp. 378–385.

    Article  CAS  PubMed  Google Scholar 

  16. Nozhevnikova, A.N., Russkova, Yu.I., Litti, Yu.V., Parshina, S.N., Zhuravleva, E.A., and Nikitina, A.A., Microbiology (Moscow), 2020, vol. 89, no. 2, pp. 129–147.

    Article  CAS  Google Scholar 

  17. Voeikova, T.A., Emel’yanova, L.K., Novikova, L.M., Shakulov, R.S., Sidoruk, K.V., Smirnov, I.A., et al., Microbiology (Moscow), 2013, vol. 82, no. 4, pp. 410-414.

    Article  CAS  Google Scholar 

  18. Marzocchi, U., Palma, E., Rossetti, S., Aulenta, F., and Scoma, A., Water Res., 2020, vol. 173, p. 115520. https://doi.org/10.1016/j.watres.2020.115520

    Article  CAS  PubMed  Google Scholar 

  19. Obileke, K.C., Onyeaka, H., Meyer, E.L., and Nwokolo, N., Electrochem. Commun., 2021, vol. 125, p. 107003. https://doi.org/10.1016/j.elecom.2021.107003

    Article  CAS  Google Scholar 

  20. Wang, X., Wan, G., Shi, L., Gao, X., Zhang, X., Li, X., et al., Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 31449–31462.

    Article  CAS  Google Scholar 

  21. Samkov, A.A., Chugunova, Yu.A., Kruglova, M.N., Moiseeva, E.V., Volchenko, N.N., Khudokormov, A.A., et al., Appl. Biochem. Microbiol., 2023, vol. 59, no. 2, pp. 198–205.

    Article  CAS  Google Scholar 

  22. Zhang, Y., Ren, J., Wang, Q., Wang, S., Li, S., and Li, H., Biochem. Eng. J., 2021, vol. 168, p. 107930. https://doi.org/10.1016/j.bej.2021.107930

    Article  CAS  Google Scholar 

  23. Chen, C.-H., Chang, C.-F., Ho, C.-H., Tsai, T.-L., and Liu, S.-M., Chemosphere, 2008, vol. 7, pp. P. 1712–1720.

  24. Khmelevtsova, L.E., Sazykin, I.S., Azhogina, T.N., and Sazykina, M.A., Appl. Biochem. Microbiol., 2020, vol. 56, no. 4, pp. 373–380.

    Article  CAS  Google Scholar 

  25. Hong, Y., Guo, J., Xu, Z., Mo, C., Xu, M., and Sun, G., Appl. Microbiol. Biotechnol., 2007, vol. 75, pp. 647–654.

    Article  CAS  PubMed  Google Scholar 

  26. Xiao, X., Xu, C.-C., Wu, Y.-M., Cai, P.-J., Li, W.-W., Du, D.-L., et al., Bioresour. Technol., 2012, vol. 110, pp. 86–90.

    Article  CAS  PubMed  Google Scholar 

  27. Lizárraga, W.C., Mormontoy, C.G., Calla, H., Castaneda, M., Taira, M., Garcia, R., et al., Biotechnol. Rep., 2022, vol. 33, p. e00704. https://doi.org/10.1016/j.btre.2022.e00704

    Article  CAS  Google Scholar 

  28. Cordas, C.M., Nguyen, G.-S., Valerio, G.N., Jonsson, M., Sollner, K., Aune, I.H., et al., J. Inorg. Biochem., 2022, vol. 226, p. 111651. https://doi.org/10.1016/j.jinorgbio.2021.111651

    Article  CAS  PubMed  Google Scholar 

  29. Tucci, M., Viggi, C.C., Nunez, A.E., Schievano, A., Rabaey, K., and Aulenta, F., Chem. Eng. J., 2021, vol. 419, p. 130008. https://doi.org/10.1016/j.cej.2021.130008

    Article  CAS  Google Scholar 

  30. Falina, I.V., Samkov, A.A., and Volchenko, N.N., Nauka Kubani, 2017, vol. 2, pp. 4–11.

    Google Scholar 

  31. Berezina, N.P., Timofeev, S.V., and Kononenko, N.A., J. Membr. Sci., 2002, vol. 209, pp. 509–518.

    Article  CAS  Google Scholar 

  32. Jadhav, G.S. and Ghangrekar, M.M., Bioresour. Technol., 2009, vol. 100, pp. 717–723.

    Article  CAS  PubMed  Google Scholar 

  33. Tian, J-H., Pourcher, A-M., and Klingelschmitt, F., Le Roux S., Peu P., J. Microbiol. Methods, 2016, vol. 130, pp. 148–153.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, J.S., Reed, A., Chen, F., and Stewart, C.N., BMC Bioinf., 2006, vol. 7, p. 85. https://doi.org/10.1186/1471-2105-7-85

  35. Satta, E., Nanni, I.M., Contaldo, N., Collina, M., Poveda, J.B., Ramirez, A.S., et al., Mol. Cell. Probes, 2017, vol. 35, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., et al., Nat. Biotechnol., 2002, vol. 20, pp. 1118–1123.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida, T. and Sugano, Y., Biochem. Biophys. Rep., 2023, vol. 33, p. 101401. https://doi.org/10.1016/j.bbrep.2022.101401

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez-Garcı J., Bonete, P., Exposito, E., Montiel, V., Aldaza, A., and Torregrosa-Macia, R., J. Mater. Chem., 1999, no. 9, pp. 419–426.

  39. Guo, Y., Zong, J., Gao, A., and Yu, N., Int. J. Electrochem. Sci., 2022, vol. 17, p. 220527. https://doi.org/10.20964/2022.05.47

    Article  CAS  Google Scholar 

  40. Singh, R. and Eltis, L.D., Arch. Biochem. Biophys., 2015, vol. 574, pp. 56–65.

    Article  CAS  PubMed  Google Scholar 

  41. Lončar, N., Colpa, D.I., and Fraaije, M.W., Tetrahedron, 2016, vol. 72, pp. 7276–7281.

    Article  Google Scholar 

  42. Chhabra, M., Mishra, S., and Sreekrishnan, T.R., J. Biotechnol., 2009, vol. 143, pp. 69–78.

    Article  CAS  PubMed  Google Scholar 

  43. Parshetti, G.K., Parshetti, S.G., Telke, A.A., Kalyani, D.C., Doong, R.A., and Govindwar, S.P., J. Environ. Sci. (China), 2011, vol. 23, no. 8, pp. P. 1384–1393.

  44. Yang, J., Zhang, Y., Wang, S., Li, S., Wang, Y., Wang, S., et al., J. Biosci. Bioeng., 2020, vol. 130, no. 4, pp. 347–351.

    Article  CAS  PubMed  Google Scholar 

  45. Kalyani, D.C., Patil, P.S., Jadhav, J.P., and Govindwar, S.P., Bioresour. Technol., 2008, vol. 99, pp. 4635–4641.

    Article  CAS  PubMed  Google Scholar 

  46. Li, B.-B., Cheng, Y.-Y., Fan, Y.-Y., Liu, D.-F., Fang, C.-Y., Wu, C., et al., Sci. Total Environ., 2018, vol. 637-638, pp. 926–933.

    Article  CAS  PubMed  Google Scholar 

  47. Li, C., Luo, M., Zhou, S., He, Ha., Cao, J., Luo, J., et al., Int. J. Hydrog. Energy, 2020, vol. 45, no. 53, pp. 29417–29429.

    Article  CAS  Google Scholar 

  48. Liu, J., Fan, L., Yin, W., Zhang, S., Su, X., Lin, H., et al., J. Environ. Manage., 2023, vol. 347, p. 119073. https://doi.org/10.1016/j.jenvman.2023.119073

    Article  CAS  PubMed  Google Scholar 

  49. Yu, Y.-Y., Zhang, Y., and Peng, L., Sci. Total Environ., 2022, vol. 838, no. 3, p. 156501. https://doi.org/10.1016/j.scitotenv.2022.156501

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 22-24-00401, https://rscf.ru/project/22-24-00401/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Samkov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samkov, A.A., Pankratova, E.V., Kruglova, M.N. et al. Decolorization of Crystal Violet by a Mixed Culture under the Influence of Bioelectrochemical Stimulation. Appl Biochem Microbiol 60, 467–475 (2024). https://doi.org/10.1134/S0003683824603585

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824603585

Keywords:

Navigation