Skip to main content
Log in

Development of Microplate Immunoenzyme Determination of Nonylphenol with Magnetic Sample Concentration

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Nonylphenol is an aromatic organic compound that has an estrogen-like effect and has a negative effect on the human endocrine system. A method has been developed for the competitive determination of nonylphenol using magnetic particles, rabbit antiserum, nonylphenol conjugate with soybean trypsin inhibitor (STI) and biotin. The principle of the analysis is the formation of immune complexes on the surface of magnetite particles due to covalent immobilization of protein G through the oriented immobilization of polyclonal antibodies from rabbit serum during a competitive reaction between the free analyte (nonylphenol) and the bound one (as part of the nonylphenol-STI-biotin conjugate) for the binding sites of specific antibodies. The detection of formed immune complexes is proposed to be carried out using a streptavidin-polyperoxidase conjugate, which makes it possible to achieve a nine-fold gain in the level of the analytical signal. The developed ELISA using magnetite particles allows us to achieve a detection limit of nonylphenol at the level of 3.8 ng/mL, which is 14.5 times lower in comparison with the classic competitive ELISA (55 ng/mL). Based on the results of the experimental work, the optimized volume of the test sample was 500 μL, which makes it possible to concentrate low-contaminated samples by 17 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Evans, A.E.V., Mateo-Sagasta, J., Qadir, M., Boelee, E., and Ippolito, A., Curr. Opin. Environ. Sustain., 2019, vol. 36, pp. 20–27.

    Article  Google Scholar 

  2. Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., and Guerrero, V.H., Environ. Technol. Innov., 2021, vol. 22, p. 101504. https://doi.org/10.1016/j.eti.2021.101504

    Article  CAS  Google Scholar 

  3. Fang, W., Peng, Y., Muir, D., Lin, J., and Zhang, X., Environ. Int., 2019, vol. 131, p. 104994. https://doi.org/10.1016/j.envint.2019.104994

    Article  CAS  PubMed  Google Scholar 

  4. Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G., Bose-O', ReillyS., Brauer, M., et al., Lancet Planet. Health, 2022, vol. 6, no. 6, pp. e535–e547.

    Article  PubMed  Google Scholar 

  5. Palani, G., Arputhalatha, A., Kannan, K., Lakkaboyana, S.K., Hanafiah, M.M., Kumar, V., and Marella, R.K., Molecules, 2021, vol. 26, no. 9, p. 2799. https://doi.org/10.3390/molecules26092799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Babuji, P., Thirumalaisamy, S., Duraisamy, K., and Periyasamy, G., Water, 2023, vol. 15, no. 14, p. 2532. https://doi.org/10.3390/w15142532

    Article  CAS  Google Scholar 

  7. Bhandari, G., Bagheri, A.R., Bhatt, P., and Bilal, M., Chemosphere, 2021, vol. 275, p. 130013. https://doi.org/10.1016/j.chemosphere.2021.130013

    Article  CAS  PubMed  Google Scholar 

  8. Gałązka, A. and Jankiewicz, U., Microorganisms, 2022, vol. 10, no. 11, p. 2236. https://doi.org/10.3390/microorganisms10112236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morin-Crini, N., Lichtfouse, E., Liu, G., Balaram, V., Ribeiro, A.R.L., Lu, Z., et al., Environ. Chem. Lett., 2022, vol. 20, no. 4, pp. 2311–2338.

    Article  CAS  Google Scholar 

  10. Chen, Y., Yang, J., Yao, B., Zhi, D., Luo, L., and Zhou, Y., Environ. Pollut., 2022, vol. 310, p. 119918. https://https://doi.org/https://doi.org/10.1016/j.envpol.2022.119918

  11. Hong, Y., Feng, C., Yan, Z., Wang, Y., Liu, D., Liao, W., and Bai, Y., Environ. Chem. Lett., 2020, vol. 18, no. 6, pp. 2095–2106.

    Article  CAS  Google Scholar 

  12. Careghini, A., Mastorgio, A.F., Saponaro, S., and Sezenna, E., Environ. Sci. Pollut. Res., 2015, vol. 22, no. 8, pp. 5711–5741.

    Article  CAS  Google Scholar 

  13. Jardak, K., Drogui, P., and Daghrir, R., Environ. Sci. Pollut. Res., 2016, vol. 23, no. 4, pp. 3195–3216.

    Article  CAS  Google Scholar 

  14. Lu, D., Yu, L., Li, M., Zhai, Q., Tian, F., and Chen, W., Chemosphere, 2021, vol. 275, p. 129973. https://doi.org/10.1016/j.chemosphere.2021.129973

    Article  CAS  PubMed  Google Scholar 

  15. Noorimotlagh, Z., Mirzaee, S.A., Martinez, S.S., Rachon, D., Hoseinzadeh, M., and Jaafarzadeh, N., Environ. Res., 2020, vol. 184, p. 109263. https://doi.org/10.1016/j.envres.2020.109263

    Article  CAS  PubMed  Google Scholar 

  16. Directive 2013/39/eu of the European parliament and of the council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy.

  17. Shih, H.-K., Shu, T.-Y., Ponnusamy, V.K., and Jen, J.-F., Anal. Chim. Acta, 2015, vol. 854, pp. 70–77.

    Article  CAS  PubMed  Google Scholar 

  18. Vargas-Berrones, K., Díaz de León-Martínez, L., Bernal-Jácome, L., Rodriguez-Aguilar, M., Ávila-Galarza, A., and Flores-Ramírez, R., Talanta, 2020, vol. 209, p. 120546. https://doi.org/10.1016/j.talanta.2019.120546

    Article  CAS  PubMed  Google Scholar 

  19. Aparicio, I., Martín, J., Santos, J.L., Malvar, J.L., and Alonso, E., J. Chromatogr., A, 2017, vol. 1500, pp. 43–52.

    Article  CAS  PubMed  Google Scholar 

  20. Yin, H.-L. and Zhou, T.-N., Chinese J. Anal. Chem, 2022, vol. 50, no. 8, p. 100112. https://https://doi.org/https://doi.org/10.1016/j.cjac.2022.100112

  21. Céspedes, R., Skryjová, K., Raková, M., Zeravik, J., Fránek, M., Lacorte, S., and Barceló, D., Talanta, 2006, vol. 70, no. 4, pp. 745–751.

    Article  PubMed  Google Scholar 

  22. Matsui, K., Kawaji, I., Utsumi, Y., Ukita, Y., Asano, T., Takeo, M., and Kato, D.-I., and Negoro, S., J. Biosci. Bioeng., 2007, vol. 104, no. 4, pp. 347–350.

    Article  CAS  PubMed  Google Scholar 

  23. Yakovleva, J.N., Lobanova, A.Y., Shutaleva, E.A., Kourkina, M.A., Mart’ianov, A.A., Zherdev, A.V., Dzantiev, B.B., and Eremin, S.A., Anal. Bioanal. Chem., 2004, vol. 378, no. 3, pp. 634–641.

    Article  CAS  PubMed  Google Scholar 

  24. Ermolaeva, T.N., Dergunova, E.S., Kalmykova, E.N., and Eremin, S.A., J. Anal. Chem., 2006, vol. 61, no. 6, pp. 609–613.

    Article  CAS  Google Scholar 

  25. Badea, M., Nistor, C., Goda, Y., Fujimoto, S., Dosho, S., Danet, A., Barcelo, D., Ventura, F., and Emneus, J., Analyst, 2003, vol. 128, no. 7, pp. 849–856.

    Article  CAS  Google Scholar 

  26. Mart’ianov, A.A., Zherdev, A.V., Eremin, S.A., and Dzantiev, B.B., Int. J. Env. Anal. Chem., 2004, vol. 84, no. 13, pp. 965–978.

    Article  Google Scholar 

  27. Mart’ianov, A.A., Dzantiev, B.B., Zherdev, A.V., Eremin, S.A., Cespedes, R., Petrovic, M., and Barcelo, D., Talanta, 2005, vol. 65, no. 2, pp. 367–374.

    Article  PubMed  Google Scholar 

  28. Berlina, A.N., Komova, N.S., Serebrennikova, K.V., Zherdev, A.V., and Dzantiev, B.B., Eng. Proc., 2023, vol. 48, no. 1, p. 9. https://doi.org/10.3390/CSAC2023-14919

    Article  Google Scholar 

  29. Berlina, A.N., Ragozina, M.Y., Gusev, D.I., Zherdev, A.V., and Dzantiev, B.B., Chemosensors, 2023, vol. 11, no. 7, p. 393. https://doi.org/10.3390/chemosensors11070393

    Article  CAS  Google Scholar 

  30. Kuang, H., Liu, L., Xu, L., Ma, W., Guo, L., Wang, L., and Xu, C., Sensors, 2013, vol. 13, no. 7, pp. 8331–8339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kato, M., Ihara, Y., Nakata, E., Miyazawa, M., Sasaki, M., Kodaira, T., and Nakazawa, H., Food Agric. Immunol., 2007, vol. 18, nos. 3–4, pp. 179–187.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (grant no. 22-13-00293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Dzantiev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlina, A.N., Barshevskaya, L.V., Serebrennikova, K.V. et al. Development of Microplate Immunoenzyme Determination of Nonylphenol with Magnetic Sample Concentration. Appl Biochem Microbiol 60, 496–502 (2024). https://doi.org/10.1134/S0003683824603536

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824603536

Keywords:

Navigation