Skip to main content
Log in

The Effect of Chitosan Conjugates with Hydroxycinnamic Acids and Bacillus subtilis Bacteria on the Activity of Protective Proteins and Resistance of Potato Plants to Phytophthora infestans

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of chitosan conjugates with caffeic (ChCA) and ferulic (ChFA) acids in combination with Bacillus subtilis bacteria on the transcriptional activity of PR protein genes and proteome changes in potato plants during infection with Phytophthora infestans (Mont.) de Bary was studied. Plants grown from mini tubers of the Udacha variety were sprayed with solutions of ChCA and ChFA, a suspension of B. subtilis bacteria strains 26D and 11 VM, and conjugates of ChCA of ChFA together with bacteria. At 3 days after treatment, some plants were infected with P. infestans. A decrease in the degree of development of the late blight pathogen on potato leaves in all treatment options was revealed. The maximum protective effect was manifested when plants were treated with the B. subtilis strain 26D bacteria in combination with conjugates of chitosan and oxycinnamic acids. The mechanisms of increasing the resistance of potato plants to P. infestans were associated with the activation of transcriptional activity of genes encoding the main protective protein (PR-1), chitinase (PR-3), thaumatin-like protein (PR-5), protease inhibitor (PR-6), peroxidase (PR-9), and ribonuclease (PR-10). The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of joint treatment of plants with B. subtilis and chitin conjugates with hydroxycinnamic acids indicates the synergistic development of protective reactions in potato plants in this variant. Using the method of two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis 12 proteins were identified; their presence in the leaves differed depending on the variant of the experiment. In all treatment variants, serine–threonine protein phosphatase activity was suppressed, reflecting the development of the hypersensitivity reaction. Different variants of the experiment formed weakly expressed clusters, which indicates multiple mechanisms of regulation of the synthesis of protective proteins involved in the reaction to treatment with bacteria, chitosan conjugates, and infection with P. infestans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chandler, D., Bailey, A.S., Tatchell, G.M., Davidson, G., Greaves, J., and Grant, W.P., Philos. Trans. R. Soc., B, 2011, vol. 366, pp. 1987–1998. https://doi.org/10.1098/rstb.2010.0390

  2. Kocięcka, J. and Liberacki, D., Plants, 2021, vol. 10, p. 1160. https://doi.org/10.3390/plants10061160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gonçalves, C., Ferreira, N., and Lourenço, L., Polymers, 2021, vol. 13, p. 2466. https://doi.org/10.3390/polym13152466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aranaz, I., Alcantara, A.R., Civera, M.C., Arias, C., Elorza, B., Heras Caballero, A., and Acosta, N., Polymers, 2021, vol. 13, p. 3256. https://doi.org/10.3390/polym13193256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Novikova, I.I., Popova, E.V., Krasnobaeva, I.L., and Kovalenko, N.M., S.-kh. Biol., 2021, vol. 56, no. 3, pp. 511–522. https://doi.org/10.15389/agrobiology.2021.3.511rus

    Article  Google Scholar 

  6. Kolesnikov, L.E., Popova, E.V., Novikova, I.I., Priyatkin, N.S., Arkhipov, M.V., Kolesnikova, Yu.R., et al., Agric. Biol., 2019, vol. 54, no. 5, pp. 1024–1040. https://doi.org/10.15389/agrobiology.2019.5.1024

    Article  Google Scholar 

  7. Krasnobaeva, I.L., Kovalenko, N.M., and Popova, E.V., Vestn. Zashch. Rast., 2020, vol. 103, no. 4, pp. 233–240. https://doi.org/10.31993/2308-6459-2020-103-4-13272

    Article  Google Scholar 

  8. Ortiz-Rodriguez, T., De La, Fuente., Salcido, N., Bideshi, D.K., Salcedo-Hernandez, R., and Barboza-Corona, J.E., Lett. Appl. Microbiol., 2010, vol. 51, pp. 184–190.

    CAS  PubMed  Google Scholar 

  9. Saharan, V. and Pal, A., Chitosan Based Nanomaterials in Plant Growth and Protection, New Delhi, India: Springer, 2016, pp. 33–41.

    Book  Google Scholar 

  10. Palazzini, J., Reynoso, A., Yerkovich, N., Zachetti, V., Ramirez, M., and Chulze, S., Toxins, 2022, vol. 14, p. 499. https://doi.org/10.3390/toxins14070499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmed, A.S., Ezziyyani, M., Sanchez, C.P., and Candela, M.E., Eur. J. Plant Pathol., 2003, vol. 109, pp. 633–637. https://doi.org/10.1023/A:1024734216814

    Article  Google Scholar 

  12. Brzezinska, M.S., Kalwasinska, A., Swiatczak, J., Zero, K., and Jankiewicz, U., Microb. Pathog., 2020, vol. 148, p. 104462. https://doi.org/10.1016/j.micpath.2020.104462

    Article  CAS  Google Scholar 

  13. Rajput, V.D., Harish, SinghR.K., Verma, K.K., Sharma, L., Quiroz-Figueroa, F.R., Meena, M., Gour, V.S., Minkina, T., Sushkova, S., and Mandzhieva, S., Biology, 2021, vol. 10, p. 267. https://doi.org/10.3390/biology10040267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kruger, N.J., in The Protein Protocols Handbook. Springer Protocols Handbooks, Walker, J.M., Ed., Totowa, USA: Humana Press, 2009, pp. 17–24.

    Google Scholar 

  15. Yarullina, L.G., Burkhanova, G.F., Cherepanova, E.A., Sorokan, A.V., Zaikina, E.A., Tsvetkov, V.O., et al., Appl. Biochem. Microbiol., 2021, vol. 57, no. 6, pp. 760–769. https://doi.org/10.31857/S0555109921060131

    Article  CAS  Google Scholar 

  16. Fedina, E.O., Karimova, F.G., Tarchevsky, I.A., Toropygin, I.Y., and Khripach, V.A., Russ. J. Plant Phys., 2008, vol. 55, pp. 193–200. https://doi.org/10.1007/s11183-008-2005-0

    Article  CAS  Google Scholar 

  17. Conrath, U., Beckers, G.J.M., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., et al., Mol. Plant Microbe Interact., 2006, vol. 19, pp. 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  18. Maksimov, I.V., Singh, B.P., Cherepanova, E.A., Burkhanova, G.F., and Khairullin, R.M., Appl. Biochem. Microbiol., 2020, vol. 56, no. 1, pp. 15–28. https://doi.org/10.1134/S0003683820010135

    Article  CAS  Google Scholar 

  19. Gonzalez-Gallegos, E., Laredo-Alcala, E., Ascacio-Valdes, J., de Rodriguez, D., and Hernandez-Castillo, F., Am. J. Plant Sci., 2015, vol. 6, no. 11, pp. 1785–1791. https://doi.org/10.4236/ajps.2015.611179

    Article  CAS  Google Scholar 

  20. Yu, Y., Gui, Y., Li, Z., Jiang, C., Guo, J., and Niu, D., Plants (Basel), 2022, vol. 11, no. 3, p. 386. https://doi.org/10.3390/plants11030386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tarchevsky, I.A. and Egorova, A.M., Appl. Biochem. Microbiol., 2022, vol. 58, no. 4, pp. 347–360. https://doi.org/10.1134/S0003683822040160

    Article  CAS  Google Scholar 

  22. Riseh, R.S., Hassanisaadi, M., Vatankhah, M., Babaki, S.A., and Barka, E.A., Int. J. Biol. Macromol., 2022, vol. 220, pp. 998–1009.

    Article  CAS  PubMed  Google Scholar 

  23. Suarez-Fernandeza, M., Marhuenda-Egeac, F.C., Lopez-Moyab, F., Arnaod, M.B., Cabrera-Escribanoe, F., Nuedaf, M.J., et al., Front. Plant Sci., 2020, vol. 11, p. 572087. https://doi.org/10.3389/fpls.2020.572087

    Article  Google Scholar 

  24. Chakraborty, M., Hasamezzaman, M., Rahman, M., Khan, M.A.R., Bhowmik, P., Mahmud, N.U., et al., Agriculture, 2020, vol. 10, no. 12, p. 624. https://doi.org/10.3390/agriculture10120624

    Article  CAS  Google Scholar 

  25. Fabro, G., Kovacs, I., Pavet, V., Szabodos, L., and Alvarez, M.E., Mol. Plant Microb. Interact., 2004, vol. 17, no. 4, pp. 343–350.

    Article  CAS  Google Scholar 

  26. Bordiec, S., Paquis, S., Lacroix, H., Dhondt, S., Barka, E., Kauffmann, A., et al., J. Exp. Bot., 2011, vol. 62, pp. 595–603. https://doi.org/10.1093/jxb/erq291

    Article  CAS  PubMed  Google Scholar 

  27. Pfannschmidt, T., Brautigam, K., Wagner, R., Dietzel, L., Schroter, Y., Steiner, S., and Nykytenko, A., Ann. Bot., 2009, vol. 103, pp. 599–607. https://doi.org/10.1093/aob/mcn081

    Article  CAS  PubMed  Google Scholar 

  28. Gagné-Bourque, F. and Mayer, B.F., PLoS One, 2015, vol. 10, no. 6, p. e0130456. https://doi.org/10.1371/journal.pone.0130456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Veselova, S.V., Nuzhnaya, T.V., and Maksimov, I.V., in Jasmonic Acid: Biosynthesis, Functions and Role in Plant Development, Morrison, L., Ed., Series Plant Science Research and Practices, USA: Nova Sci. Publishers, 2015, pp. 33–66.

  30. Glazebrook, J., Annu. Rev. Phytopathol., 2005, vol. 43, p. 205. https://doi.org/10.1146/annurev.phyto.43.040204.135923

    Article  CAS  PubMed  Google Scholar 

  31. Gimenez-Ibanez, S. and Solano, R., Front. Plant Sci., 2013, vol. 4, p. 72. https://doi.org/10.3389/fpls.2013.00072

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, F., Wang, M., Zhang, Y., Luo, J., Yang, X., and Wang, X., J. Microbiol. Biotechnol., 2010, vol. 26, pp. 675–684.

    Article  CAS  Google Scholar 

  33. Vasyukova, N.I. and Ozeretskovskaya, O.L., Russ. J. Plant Physiol., 2009, vol. 56, no. 5, pp. 581–590. https://doi.org/10.1134/S102144370905001X

    Article  CAS  Google Scholar 

  34. He, M., Xu, Y., and Cao, J., Protoplasma, 2013, vol. 250, no. 1, pp. 1229–1240.

    Article  Google Scholar 

  35. Choi, D.S., Hwang, I.S., and Hwang, B.K., Plant Cell, 2012, vol. 24, no. 4, pp. 1675–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Corne, M.J., and Pieterse, C.M.J., Trends Plant Sci., 2016, vol. 21, pp. 818–822. https://doi.org/10.1016/j.tplants.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  37. Krompholz, N., Krischkowski, C., Reichmann, D., Garbe-Schonberg, D., Mendel, R., Bittner, F., et al., Chem. Res. Toxicol., 2012, vol. 25, no. 11, p. 2443. https://doi.org/10.1021/tx300298m

    Article  CAS  PubMed  Google Scholar 

  38. Rixen, S., Havemeyer, A., Tyl-Bielicka, A., Pysniak, K., Gajewska, M., Kulecka, M., et al., J. Biol. Chem., 2019, vol. 294, p. RA119.007606. https://doi.org/10.1074/jbc.RA119.007606

  39. Plitzko, B., Havemeyer, A., Kunze, T., and Clement, B., Cell Biol., 2015, vol. 290, no. 16, p. 10126. https://doi.org/10.1074/jbc.M115.640052

    Article  CAS  Google Scholar 

  40. Máthé, C., Garda, T., Freytag, C., and M-Hamvas, M., Int. J. Mol. Sci., 2019, vol. 20, p. 3028. https://doi.org/10.3390/ijms20123028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moreno, J.I., Martın, R., and Castresana, C., Plant J., 2005, vol. 41, p. 451. https://doi.org/10.1111/j.1365-313X.2004.02311.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 23-16-00139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Yarullina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Mittova

The article has been presented at the XVI All-Russian Conference with International Participation “Modern Perspectives in Chitin and Chitosan Studies” (RosChit-2023, https://roschit23.ru).

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarullina, L.G., Burkhanova, G.F., Tsvetkov, V.O. et al. The Effect of Chitosan Conjugates with Hydroxycinnamic Acids and Bacillus subtilis Bacteria on the Activity of Protective Proteins and Resistance of Potato Plants to Phytophthora infestans. Appl Biochem Microbiol 60, 231–240 (2024). https://doi.org/10.1134/S0003683824020194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824020194

Keywords:

Navigation