Skip to main content
Log in

Study of Intestinal Bacteria of Cirrhinus reba and Characterization of a New Probiotic Bacteria: An Initiative to Save the Threatened Species of Cirrhinus

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Cirrhinus reba (Hamilton, 1822) has gained high recognition in southern Asia for its nutritional and commercial benefits, although the carp is now facing productivity constraints. Probiotic-based captive breeding of the carp can be a promising technique to enhance the productivity and health status of the carp. The comprehensive study was performed on bacteria in the intestinal tract of C. reba. The total load of culturable bacteria in the gut of the carp was 8.34 ± 1.64 × 107 CFU/g comprising 19 different types of colonies. Most (73.7%) of the isolates were Gram-positive and rod-shaped bacteria. Among them, two intestinal isolates (PKS9 and PKS10) had shown significant antagonism against common fish pathogens namely, Staphylococcus aureus, Vibrio harveyi, and Vibrio parahaemolyticus. 16S rDNA sequencing identified the isolates PKS9 and PKS10 as Bacillus paramycoides (OM038513) and Bacillus cereus (OM033468), respectively. The isolates were determined to be biofilm formers, could persist in both acidic and alkaline environments, had high resistance to bile salts, possess surface hydrophobicity and auto-aggregation efficacy. The tests on pathogenicity and bio-safety confirmed the non-pathogenic nature of the isolates. Moreover, the strains had liberated extracellular enzymes and exhibited antioxidative properties. Hence, the isolates might be used as potential candidate probiotics for the cultivation of C. reba to enhance the nutritional and health status of the species. To the best of our knowledge, this is the first report analyzing the gut microbiota of Reba carp and establishing B. paramycoides as aquaculture probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Afroz, H. and Begum, M., Int. J. Sci. Eng. Res., 2014, vol. 5, pp. 2301–2306.

    Google Scholar 

  2. Gupta, S. and Banerjee, S., Fish Aquacult. J., 2016, vol. 7, no. 2, pp. 1–5. https://doi.org/10.4172/2150-3508.1000170

    Article  Google Scholar 

  3. Nayak, S.K. and Mukherjee, S.C., Aquacult. Res., 2011, vol. 42, no. 7, pp. 1034–1041. https://doi.org/10.1111/j.1365-2109.2010.02686.x

    Article  Google Scholar 

  4. Chattaraj, S., Ganguly, A., Mandal, A., and Das Mohapatra, P.K., Aquacult. Int., 2022, vol. 30, no. 5, pp. 2513–2539. https://doi.org/10.1007/s10499-022-00915-6

    Article  Google Scholar 

  5. Chattaraj, S., Mitra, D., Chattaraj, A., Chattaraj, M., Kundu, M., Ganguly, A. et al., Ind. J. Microbiol. Res., 2023, vol. 10, no. 1, pp. 1–10. https://doi.org/10.18231/j.ijmr.2023.001

    Article  Google Scholar 

  6. Rendueles, O., Kaplan, J.B., and Ghigo, J.M., Environ. Microbiol., 2013, vol. 15, pp. 334–346. https://doi.org/10.1111/j.1462-2920.2012.02810.x

    Article  CAS  PubMed  Google Scholar 

  7. Nandi, A., Dan, S.K., Banerjee, G., Ghosh, P., Ghosh, K., Ringø, E., et al., Probiotics Antimicrob., Proteins, 2017, vol. 9, no. 1, pp. 12-–1. https://doi.org/10.1007/s12602-016-9228-8

    Article  PubMed  Google Scholar 

  8. Duan, X.J., Zhang, W.W., Li, X.M., and Wang, B.G., Food Chem., 2006, vol. 95, no. 1, pp. 37–43. https://doi.org/10.1016/j.foodchem.2004.12.015

    Article  CAS  Google Scholar 

  9. Nithya, V. and Halami, P.M., Ann. Microbiol., 2013, vol. 63, no. 1, pp. 129–137. https://doi.org/10.1007/s13213-012-0453-4

    Article  CAS  Google Scholar 

  10. Ganguly, A., Banerjee, A., Mandal, A., Khan, M.A., and Mohapatra, P.K.D., Proc. Zool. Soc., 2019, vol. 72, no. 4, pp. 411–419. https://doi.org/10.1007/s12595-018-0283-x

  11. Gram, L., Melchiorsen, J., Spanggaard, B., Huber, I., and Nielsen, T.F., Appl. Environ. Microbiol., 1999, vol. 65, no. 3, pp. 969–973. https://doi.org/10.1128/AEM.65.3.969-973.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vignolo, G.M., Suriani, F., Holgado, A.P.D.R., and Oliver, G., J. Appl. Bacterial., 1993, vol. 75, no. 4, pp. 344–349. https://doi.org/10.1111/j.1365-2672.1993.tb02786.x

    Article  CAS  Google Scholar 

  13. Maragkoudakis, P.A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., and Tsakalidou, E., Int. Dairy J., 2006, vol. 16, no. 3, pp. 189–199. https://doi.org/10.1016/j.idairyj.2005.02.009

    Article  CAS  Google Scholar 

  14. Kavitha, M., Raja, M., and Perumal, P., Aquac. Rep., 2018, vol. 11, pp. 59–69. https://doi.org/10.1016/j.aqrep.2018.07.001

    Article  Google Scholar 

  15. O’Hara, C.M., Brenner, F.W., and Miller, J.M., Clin. Microbiol. Rev., 2000, vol. 13, no. 4, pp. 534–546. https://doi.org/10.1128/CMR.13.4.534

    Article  PubMed  PubMed Central  Google Scholar 

  16. Savage, D.C., Appl. Environ. Microbiol., 1992, vol. 58, no. 6, pp. 1992–1995. https://doi.org/10.1128/aem.58.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganguly, A., Banerjee, A., Mandal, A., and Das Mohapatra, P.K., Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 2018, vol. 4, no. 4, pp. 344–354. https://doi.org/10.26479/2018.0404.30

    Article  CAS  Google Scholar 

  18. Das, A., Paul, T., Halder, S.K., Jana, A., Maity, C., Das Mohapatra, P.K., et al., Bioresour. Technol., 2013, vol. 128, pp. 290–296. https://doi.org/10.1016/j.biortech.2012.10.080

    Article  CAS  PubMed  Google Scholar 

  19. Kaiser. T.D.L., Pereira, E.M., Dos Santos, K.R.N., Maciel, E.L.N., Schuenck, R.P. et al., Diagn. Microbiol. Infect. Dis., 2013, vol. 75, no. 3, pp. 235–239. https://doi.org/10.1016/j.diagmicrobio.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee, G., Nandi, A., and Ray, A.K., Arch. Microbiol., 2017, vol. 199, no. 1, pp. 115–124. https://doi.org/10.1007/s00203-016-1283-8

    Article  CAS  PubMed  Google Scholar 

  21. Hall, B.G., Mol. Biol. Evol., 2013, vol. 30, no. 5, pp. 1229–1235. https://doi.org/10.1093/molbev/mst012

    Article  CAS  PubMed  Google Scholar 

  22. Bhatnagar, A. and Lamba, R., J. Integr. Agric., 2015, vol. 14, no. 3, pp. 583–592. https://doi.org/10.1016/S2095-3119(14)60836-4

    Article  Google Scholar 

  23. Anggriani, L., Budiarti, S.R.I., and Mubarik, N.R., Biodiversitas, 2020, vol. 21, no. 2. https://doi.org/10.13057/biodiv/d210226

  24. Tsadila, C., Nikolaidis, M., Dimitriou, T.G., Kafantaris, I., Amoutzias, G.D., Pournaras, S., et al., Appl. Sci., 2021, vol. 11, no. 13, p. 5801. https://doi.org/10.3390/app11135801

    Article  CAS  Google Scholar 

  25. Akbar, N., Siddiqui, R., Sagathevan, K., and Khan, N.A., Int. Microbiol., 2020, vol. 23, no. 4, pp. 511–526. https://doi.org/10.1007/s10123-020-00123-3

    Article  CAS  PubMed  Google Scholar 

  26. Thankappan, B., Ramesh, D., Ramkumar, S., Natarajaseenivasan, K., and Anbarasu, K., Appl. Biochem. Biotechnol., 2015, vol. 175, no. 1, pp. 340–353. https://doi.org/10.1007/s12010-014-1270-y

    Article  CAS  PubMed  Google Scholar 

  27. Nedelcheva, P., Denkova, Z., Denev, P., Slavchev, A., and Krastanov, A., Biotech. Biotechnol. Equip., 2010, vol. 24, pp. 1624–1630. https://doi.org/10.2478/V10133-010-0016-4

    Article  Google Scholar 

  28. Bäumler, A. and Sperandio, V., Nature, 2016, vol. 535, pp. 85–93. https://doi.org/10.1038/nature18849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, X., Fu, H., Bao, M., Zhang, X., Liu, W., Sun, X. et al., Microbiol. Res., 2021, vol. 251, p. 126839. https://doi.org/10.1016/j.micres.2021.126839

    Article  CAS  PubMed  Google Scholar 

  30. Begley, M., Hill, C., and Gahan, C.G., Appl. Environ. Microbiol., 2006, vol. 72, no. 3, pp. 1729–1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuebutornye, F.K., Abarike, E.D., and Lu, Y., Fish Shellfish Immunol., 2019, vol. 87, pp. 820–828. https://doi.org/10.1016/j.fsi.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  32. Kuebutornye, F.K.A., Lu, Y., Wang, Z., and Mraz, J., LWT, 2022, vol. 163, p.113541. https://doi.org/10.1016/j.lwt.2022.113541

    Article  CAS  Google Scholar 

  33. Nayak, S.K., Rev. Aquacult., 2021, vol. 13, no. 2, pp. 862–906. https://doi.org/10.1111/raq.12503

    Article  Google Scholar 

  34. Kuebutornye, F.K., Abarike, E.D., Lu, Y., Hlordzi, V., Sakyi, M.E., Afriyie, G., et al., Fish Physiol. Biochem., 2020, vol. 46, no. 3, pp. 819–841. https://doi.org/10.1007/s10695-019-00754-y

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, R., Gokulakrishnan, M., Debbarma, J., and Damle, D.K., Anim. Reprod. Sci., 2022, vol. 238, p. 106957. https://doi.org/10.1016/j.anireprosci.2022.106957

    Article  PubMed  Google Scholar 

  36. Yang, C., Huang, W., Sun, Y., You, L., Jin, H., and Sun, Z., Arch. Microbiol., 2021, vol. 203, no. 6, pp. 3305–3315. https://doi.org/10.1007/s00203-021-02315-5

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

All the authors are thankful to the Central Instrumentation Unit, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India for allowing their Scanning Electron Microscopy facility.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Das Mohapatra.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattaraj, S., Ganguly, A., Mitra, D. et al. Study of Intestinal Bacteria of Cirrhinus reba and Characterization of a New Probiotic Bacteria: An Initiative to Save the Threatened Species of Cirrhinus. Appl Biochem Microbiol 60, 80–94 (2024). https://doi.org/10.1134/S0003683824010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683824010046

Keywords:

Navigation