Skip to main content
Log in

Agonists and Antagonists of GIP and GLP-1 Receptors: Recombinant Species-Specific Variants and Mutual Neutralization of Activity

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The development of recombinant modified derivatives of human glucose-dependent insulinotropic polypeptide (rmGIP) and glucagon-like peptide 1 (rmGLP-1) has been carried out as part of the project to create a prototype of a two-component drug. The aims were to increase the activity of GIP derivatives and obtain antagonists of GIP and GLP-1 receptors for selective neutralization of the activity of the corresponding components of a promising drug. For this purpose, well-known mutations were introduced into the structure of the basic human rmGIP(1‒42)h variant: a deletion of residues 32–42 and a H18R substitution, which is species specific for the mouse/rat hormones. The hypoglycemic activity of the drugs was measured using a glucose tolerance test on healthy mice. In most cases, the engineered mutations turned out to be unexpectedly ineffective or did not affect the hypoglycemic activity of GIP derivatives at all. The maximum two-fold increase in activity was recorded only in the modified rmGIP(1‒31) rat variant, which contained both mutations simultaneously. Inactivated rmGIP(3‒31)rat and rmGLP-1(3‒31) derivatives, containing the deletion of two N-terminal residues, specific for natural antagonists of the GIP and GLP-1 receptors (GIPR and GLP-1R, respectively) individually exhibited the expected dose-dependent antagonistic activity. At the same time, their equimolar mixture, instead of the expected additive effect, showed a complete loss of sugar-increasing activity. Based on the obtained results, we formulated the hypothesis about the ability of metabolites of the derivatives of incretin hormones GIP and GLP-1 to interact with each other in the process of glycemic regulation. This fact should be taken into account when studying the mechanisms of glycemic control and developing drugs based on agonists and antagonists of GIP and GLP-1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Sannikova, E.P., Bulushova, N.V., Cheperegin, S.E., Zalunin, I.A., Klebanov, F.A., Gracheva, T.S., Yurin, V.L., Rykalina, N.V., Askerova, E.V., Yarotskii, S.V., Tatarnikova, O.G., Bobkova, N.V., and Kozlov, D.G., Specific activity of recombinant modified human glucagon-like peptide 1, Appl. Biochem. Microbiol., 2019, vol. 55, no. 7, pp. 722–732.

    Article  CAS  Google Scholar 

  2. Treshchalin, I.D., Golibrodo, V.A, Treshchalin, M.I., Kozlov, D.G., Yarotskii, S.V., and Pereverzeva, E.R., Study on rats of chronic toxicity of human recombinant modified glucagon-like peptide rmGPP-1 with prolonged action, Eksp. Klin. Farmakol., 2018, vol. 81, p. 246. https://doi.org/10.30906/0869-2092-2018-81-5s-1-306

    Article  Google Scholar 

  3. Rykalina, N.V., Askerova, E.V., Bulushova, N.V., and Kozlov, D.G., Intranasal human recombinant modified glucagon-like peptide-1: high antihyperglycemic activity and duration of action in mice, Bull. Exp. Biol. Med., 2020, vol. 169, pp. 53–56. https://doi.org/10.1007/s10517-020-04822-9

    Article  CAS  PubMed  Google Scholar 

  4. Bulushova, N.V., Zalunin, I.A., Asrarkulova, A.S., and Kozlov, D.G., Incretin analogues in the therapy of type 2 diabetes and obesity?, Appl. Biochem. Microbiol., 2022, vol. 58, no. 7, pp. 854–863. https://doi.org/10.1134/S0003683822070031

    Article  CAS  Google Scholar 

  5. Flatt, P.R. and Conlon, J.M., Editorial: GIP renaissance, Peptides, 2020, vol. 125, p. 170266. https://doi.org/10.1016/j.peptides.2020.170266

    Article  CAS  PubMed  Google Scholar 

  6. Gasbjerg, L.S., Gabe, M.B.N., Hartmann, B., Christensen, M.B., Knop, F.K., Holst, J.J., and Rosenkilde, M.M., Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents, Peptides, 2018, vol. 100, pp. 173–181. https://doi.org/10.1016/j.peptides.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  7. Nauck, M.A. and Meier, J.J., GIP and GLP-1: stepsiblings rather than monozygotic twins within the incretin family, Diabetes, 2019, vol. 68, pp. 897–900. https://doi.org/10.2337/dbi19-0005

    Article  CAS  PubMed  Google Scholar 

  8. Gasbjerg, L.S., Helsted, M.M., Hartmann, B., Jensen, M.H., Gabe, M.B.N., Sparre-Ulrich, A.H., Veedfald, S., Stensen, S., Lanng, A.R., Bergmann, N.C., Christensen, M.B., Vilsboll, T., Holst, J.J., Rosenkilde, M.M., and Knop, F.K., Separate and combined glucometabolic effects of endogenous glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 in healthy individuals, Diabetes, 2019, vol. 68, pp. 906–917. https://doi.org/10.2337/db18-1123

    Article  CAS  PubMed  Google Scholar 

  9. Nauck, M.A., Heimesaat, M.M., Orskov, C., Holst, J.J., Ebert, R., and Creutzfeldt, W., Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus, J. Clin. Invest., 1993, vol. 91, no. 1, pp. 301–307. https://doi.org/10.1172/JCI116186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boer, G.A. and Holst, J.J., Incretin hormones and type 2 diabetes—mechanistic insights and therapeutic approaches, Biology, 2020, vol. 9, no. 12, p. 473. https://doi.org/10.3390/biology9120473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sparre-Ulrich, A.H., Hansen, L.S., Svendsen, B., Christensen, M., Knop, F.K., Hartmann, B., Holst, J.J., and de Rosenkil, M.M., Species-specific action of (Pro3)GIP—a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors, Br. J. Pharmacol., 2016, vol. 173, no. 1, pp. 27–38. https://doi.org/10.1111/bph.13323

    Article  CAS  PubMed  Google Scholar 

  12. Mroz, P.A., Finan, B., Gelfanov, V., Yang, B., Tschop, M.H., DiMarchi, R.D., and Perez-Tilve, D., Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism, Mol. Metab., 2019, vol. 20, pp. 51–62. https://doi.org/10.1016/j.molmet.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  13. Bobrov E.S., Gorbunova A.Yu., Sannikova E.P., Gubaidullin I.I., Ignatova O.M., Kopaeva M.Yu., Bulushova N.V., Kozlov D.G. Copurification of a recombinant modified glucagon-like and glucose-dependent insulinotropic peptide to create a two-component drug for the treatment of type 2 diabetes mellitus and obesity, Appl. Biochem. Microbiol., 2022, vol. 58, no. 69, pp. 976–983. https://doi.org/10.1134/S0003683822090034

    Article  CAS  Google Scholar 

  14. Sannikova, E.P., Cheperegin, S.E., and Kozlov, D.G., Ubiquitin-specific E. coli proteinase does not require the obligatory presence of dipeptide GlyGly at processing site, Appl. Biochem. Microbiol., 2019, vol. 55, no. 9, pp. 846–849. https://doi.org/10.1134/S0003683819090060

    Article  CAS  Google Scholar 

  15. Widenmaier, S.B., Kim, S.-J., Yang, G.K., De Los, Reyes, T., Nian, C., Asadi, A., Seino, Y., Kieffer, T.J., Kwok, Y.N., and McIntosh, C.H.S., A GIP receptor agonist exhibits β-cell anti-apoptotic actions in rat models of diabetes resulting in improved β-cell function and glycemic control, PLoS One, 2010, vol. 5, no. 3, p. e9590. https://doi.org/10.1371/journal.pone.0009590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kieffer, T.J., McIntosh, C.H., and Pederson, R.A., Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide-1 in vitro and in vivo by dipeptidyl peptidase IV, Endocrinology, 1995, vol. 136, pp. 3585–3596. https://doi.org/10.1210/endo.136.8.7628397

    Article  CAS  PubMed  Google Scholar 

  17. Deacon, C.F., Circulation and degradation of GIP and GLP-1, Horm. Metab. Res., 2004, vol. 36, nos. 11–12, pp. 761–765. https://doi.org/10.1055/s-2004-826160

    Article  CAS  PubMed  Google Scholar 

  18. Baggio, L.L. and Drucker, D.J., Biology of incretins: GLP-1 and GIP, Gastroenterology, 2007, vol. 132, pp. 2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054

    Article  CAS  PubMed  Google Scholar 

  19. Hansen, L.S., Sparre-Ulrich, A.H., Christensen, M., Knop, F.K., Hartmann, B., Holst, J.J., and Rosenkilde, M.M., N-terminally and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor, Br. J. Pharmacol., 2016, vol. 173, no. 5, pp. 826–838. https://doi.org/10.1111/bph.13384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knudsen, L.B. and Pridal, L., Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor, Eur. J. Pharmacol., 1996, vol. 318, no. 2–3, pp. 429–435. https://doi.org/10.1016/s0014-2999(96)00795-9

    Article  CAS  PubMed  Google Scholar 

  21. Rolin, B., Deacon, C.F., Carr, R.D., and Ahren, B., The major glucagon-like peptide-1 metabolite, GLP-1-(9–36)-amide, does not affect glucose or insulin levels in mice, Eur. J. Pharmacol., 2004, vol. 494, nos. 2–3, pp. 283–288. https://doi.org/10.1016/j.ejphar.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  22. Deacon, C.F., Plamboeck, A., Rosenkilde, M.M., Heer, J.D., and Holst, J.J., GIP-(3–42) does not antagonize insulinotropic effects of GIP at physiological concentrations, Am. J. Physiol. Endocrinol. Metab., 2006, vol. 291, no. 3, pp. E468–E475. https://doi.org/10.1152/ajpendo.00577.2005

    Article  CAS  PubMed  Google Scholar 

  23. Elahi, D., Egan, J.M., Shannon, R.P., Meneilly, G.S., Khatri, A., Habener, J.F., and Andersen, D.K., GLP-1 (9–36) amide, cleavage product of GLP-1 (7–36) amide, is a glucoregulatory peptide, Obesity (Silver Spring), 2008, vol. 16, no. 7, pp. 1501–1509. https://doi.org/10.1038/oby.2008.229

    Article  CAS  PubMed  Google Scholar 

  24. Tomas, E., Stanojevic, V., and Habener, J.F., GLP-1 (9–36) amide metabolite suppression of glucose production in isolated mouse hepatocytes, Horm. Metab. Res., 2010, vol. 42, no. 9, pp. 657–662. https://doi.org/10.1055/s-0030-1253421

    Article  CAS  PubMed  Google Scholar 

  25. Kuc, R.E., Maguire, J.J., Siew, K., Patel, S., Derksen, D.R., Jackson, V.M., O’Shaughnessey, K.M., and Davenport, A.P., Characterization of [125I]GLP-1(9–36), a novel radiolabeled analog of the major metabolite of glucagon-like peptide 1 to a receptor distinct from GLP1-R and function of the peptide in murine aorta, Life Sci., 2014, vol. 102, no. 2, pp. 134–138. https://doi.org/10.1016/j.lfs.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  26. Vrecl, M., Drinovec, L., Elling, C., and Heding, A., Opsin oligomerization in a heterologous cell system, J. Recept. Signal. Transduct. Res., 2006, vol. 26, nos. 5–6, pp. 505–526. https://doi.org/10.1080/10799890600932253

    Article  PubMed  Google Scholar 

  27. Schelshorn, D., Joly, F., Mutel, S., Hampe, C., Breton, B., Mutel, V., and Lutjens, R., Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G protein-coupled receptor heteromer formation, Mol. Pharmacol., 2012, vol. 81, pp. 309–318. https://doi.org/10.1124/mol.111.074757

    Article  CAS  PubMed  Google Scholar 

  28. Song, Yi.Yu., Shen, C., Wang, Y., and Wang, N., Dimerization/oligomerization of the extracellular domain of the GLP-1 receptor and the negative cooperativity in its ligand binding revealed by the improved NanoBiT, FASEB J., 2020, vol. 34, no. 3, pp. 4348–4368. https://doi.org/10.1096/fj.201902007R

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Kozlov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All manipulations with test animals were carried out in accordance with the current international legislation in this area. The studies were approved by the local Biomedical Research Ethics Committee of the National Research Center Kurchatov Institute, protocol No. NG-1/01.13pr dated March 11, 2021.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Gordon

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: GIP, glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide); GLP-1, glucagon-like peptide 1; rmGIP, recombinant modified GIP; rmGIPh, human rmGIP; rmGIPrat, rat rmGIP; rmGIP(1‒42)rh, rat–human rmGIP; rmGLP-1, recombinant modified GLP-1; SD, standard deviation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopaeva, M.Y., Sannikova, E.P., Bobrov, E.S. et al. Agonists and Antagonists of GIP and GLP-1 Receptors: Recombinant Species-Specific Variants and Mutual Neutralization of Activity. Appl Biochem Microbiol 59, 1125–1131 (2023). https://doi.org/10.1134/S0003683823090065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823090065

Keywords:

Navigation