Skip to main content
Log in

The Function of the XlnR Transcription Factor in the Filamentous Fungus Penicillium verruculosum

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The Penicillium verruculosum filamentous fungus is a highly active producer of cellulolytic complex enzymes, cellobiohydrolases, endoglucanases and β-glucosidases. Using the CRISPR/Cas9 genome editing system, previously adapted to P. verruculosum, a strain with a knockout of the xlnR gene encoding XlnR, one of the main transcription factors of filamentous fungi, has been obtained. The transcription level of cellulolytic genes was determined by quantitative PCR for the P. verruculosum B1-221-151 strain and the new P. verruculosum ΔxlnR strain. The XlnR protein was shown to activate transcription of the cbh1, egl2, and bgl1 genes encoding cellobiohydrolase 1, endoglucanase 2, and β-glucosidase, respectively, in the presence of xylose and xylooligosaccharides in the growth medium. It was found that other factors are also involved in the activation of transcription of these genes by cellobiose, cellotriose, sophorose, and gentiobiose, which has a complex effect on the biosynthesis of the cellulolytic complex of enzymes produced by the P. verruculosum fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.

REFERENCES

  1. Rozhkova, A.M. and Kislitsin, V.Y., CRISPR/Cas genome editing in filamentous fungi, Biochemistry (Moscow), 2021, vol. 86, no. 1, pp. S120–S139. https://doi.org/10.1134/S0006297921140091

    Article  CAS  PubMed  Google Scholar 

  2. Blackburn, P.R., Campbell, J.M., Clark, K.J., and Ekker, S.C., The CRISPR system-keeping zebrafish gene targeting fresh, Zebrafish, 2013, vol. 10, no. 1, pp. 116–118. https://doi.org/10.1089/zeb.2013.9999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ebina, H., Misawa, N., Kanemura, Y., and Koyanagi, Y., Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus, Sci. Rep., 2013, vol. 3, p. 2510. https://doi.org/10.1038/srep02510

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tyagi, S., Kumar, R., Das, A., Won, S.Y., and Shukla, P., CRISPR-Cas9 system: a genome-editing tool with endless possibilities, J. Biotechnol., 2020, vol. 319, pp. 36–53. https://doi.org/10.1016/j.jbiotec.2020.05.008

    Article  CAS  PubMed  Google Scholar 

  5. Nodvig, C.S., Nielsen, J.B., Kogle, M.E., and Mortensen, U.H., A CRISPR-Cas9 system for genetic engineering of filamentous fungi, PLoS One, 2015, vol. 10, no. 7, p. e0133085. https://doi.org/10.1371/journal.pone.0133085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuivanen, J., Wang, Y.J., and Richard, P., Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9, Microb. Cell Fact., 2016, vol. 15, no. 1, p. 210. https://doi.org/10.1186/s12934-016-0613-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pohl, C., Kiel, J.A., Driessen, A.J., Bovenbeg, R.A.L., and Nygard, Y., CRISPR/Cas9 based genome editing of Penicillium chrysogenum, ACS Synth. Biol., 2016, vol. 5, no. 7, pp. 754–764. https://doi.org/10.1021/acssynbio.6b00082

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen, M.L., Isbrandt, T., Rasmussen, K.B., Thrane, U., Hoof, J.B., Larsen, T.O., and Mortensen, U.H., Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR-Cas9, PLoS One, 2017, vol. 12, no. 1, p. e0169712. https://doi.org/10.1371/journal.pone.0169712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rantasalo, A., Vitikainen, M., Paasikallio, T., Jantii, J., Landowski, C.P., and Mojzia, D., Novel genetic tools that enable highly pure protein production in Trichoderma reesei, Sci. Rep., 2019, vol. 9, no. 1, p. 5032. https://doi.org/10.1038/s41598-019-41573-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berlin, A., Gilkes, N., Kilburn, D., Maximenko, V., Bura, R., Markov, A., Skomarovsky, A., Gusakov, A., Sinitsyn, A., Okunev, O., Solovieva, I., and Saddler, J., Evaluation of cellulase preparations for hydrolysis of hardwood substrates, Appl. Biochem. Biotechnol., 2006, vols. 129–132, pp. 528–545. https://doi.org/10.1385/abab:130:1:528

    Article  PubMed  Google Scholar 

  11. Sinitsyn, A.P., Sinitsyna, O.A., Zorov, I.N., and Rozhkova, A.M., Exploring the capabilities of the Penicillium verruculosum expression system for the development of producers of enzymes for the effective degradation of renewable plant biomass: a review, Appl. Biochem. Microbiol., 2020, vol. 56, no. 6, pp. 638–646. https://doi.org/10.1134/S0003683820060162

    Article  CAS  Google Scholar 

  12. Kislitsin, V.Y., Chulkin, A.M., Zorov, I.N., Denisenko, Yu.A., Sinitsyn, A.P., and Rozhkova, A.M., The effect of cellobiohydrolase 1 gene knockout for composition and hydrolytic activity of the enzyme complex secreted by filamentous fungus Penicillium verruculosum, Bioresour. Technol. Rep., 2022, vol. 18. https://doi.org/10.1016/j.biteb.2022.101023

  13. Klaubauf, S., Narang, H.M., Post, H., Zhou, M., Brunner, K., Mach-Aiger, A.R., Mach, R.L., Heck, A.J.R., Altelaar, A.F., and Vries, R.P., Similar is not the same: differences in the function of the (hemi-) cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi, Fungal Genet. Biol., 2014, vol. 72, pp. 73–81. https://doi.org/10.1016/j.fgb.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  14. Huberman, L.B., Liu, J., Qin, L., and Glass, L., Regulation of the lignocellulolytic response in filamentous fungi, Fungal Biol. Rev., 2016, vol. 30, no. 3, pp. 101–111. https://doi.org/10.1016/j.fbr.2016.06.001

    Article  Google Scholar 

  15. Fujii, T., Inoue, H., and Ishikawa, K., Decreased cellulase and xylanase production in the fungus Talaromyces cellulolyticus by disruption of tacA and tctA genes, encoding putative zinc finger transcriptional factors, Appl. Biochem. Biotechnol., 2015, vol. 175, no. 6, pp. 3218–3229. https://doi.org/10.1007/s12010-015-1497-2

    Article  CAS  PubMed  Google Scholar 

  16. van Peij, N.N., Gielkens, M.M., de Vries, R.P., Visse, J., and de Graaff, L.H., The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger, Appl. Environ. Microbiol., 1998, vol. 64, no. 10, pp. 3615–3619. https://doi.org/10.1128/AEM.64.10.3615-3619.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gielkens, M.M., Dekkers, E., Visser, J., and de Graaff, L.H., Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression, Appl. Environ. Microbiol., 1999, vol. 65, no. 10, pp. 4340–4345. https://doi.org/10.1128/AEM.65.10.4340-4345.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Battaglia, E., Visser, L., Nijssen, A., van Veluw, G.J., Wosten, H.A., and de Vries, R.P., Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales, Stud. Mycol., 2011, vol. 69, no. 1, pp. 31–38. https://doi.org/10.3114/sim.2011.69.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Vries, R.P., Broeck, H.C., Dekkers, E., Manzanares, P., de Graaff, L.H., and Visser, J., Differential expression of three alpha-galactosidase genes and a single betagalactosidase gene from Aspergillus niger, Appl. Environ. Microbiol., 1999, vol. 65, no. 6, pp. 2453–2460. https://doi.org/10.1128/AEM.65.6.2453-2460.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaminskyj, S.G., Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans, Fungal Genet. Newslett., 2001, vols. 25–31.

    Google Scholar 

  21. Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A., and Lukyanov, S.A., An improved PCR method for walking in uncloned genomic DNA, Nucleic Acids Res., 1995, vol. 23, no. 6, pp. 1087–1088. https://doi.org/10.1093/nar/23.6.1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aleksenko, A.Y., Makarova, N.A., Nikolaev, I.V., and Clutterbuck, A.J., Integrative and replicative transformation of Penicillium canescens with a heterologous nitrate-reductase gene, Curr. Genet., 1995, vol. 28, no. 5, pp. 474–477.

    Article  CAS  PubMed  Google Scholar 

  23. Kislitsin, V.Yu., Chulkin, A.M., Zorov, I.N., Shashkov, I.A., Satrutdinov, A.D., Sinitsyn, A.P., and Rozhkova, A.M., Influence of mono- and oligosaccharides on cbh1 gene transcription in the filamentous fungus Penicillium verruculosum, Appl. Biochem. Microbiol., 2021, vol. 57, no. 9, pp. 925–932. https://doi.org/10.1134/S0003683821090040

    Article  CAS  Google Scholar 

  24. Pabo, C.O., Peisach, E., and Grant, R.A., Design and selection of novel Cys2His2 zinc finger proteins, Annu. Rev. Biochem., 2001, vol. 70, pp. 313–340. https://doi.org/10.1146/annurev.biochem.70.1.313

    Article  CAS  PubMed  Google Scholar 

  25. Cove, D.J., Cholorate toxicity in Aspergillus nidulans: the selection and characterisation of chlorate resistant mutants, Heredity (Edinb.), 1976, vol. 36, no. 2, pp. 191–203. https://doi.org/10.1038/hdy.1976.24

    Article  CAS  PubMed  Google Scholar 

  26. Morozova, V.V., Gusakov, A.V., Andrianov, R.M., Pravilnikov, A.G., Osipov, D.O., and Sinitsyn, A.P., Cellulases of Penicillium verruculosum, Biotechnol. J., 2010, vol. 5, no. 8, pp. 871–880. https://doi.org/10.1002/biot.201000050

    Article  CAS  PubMed  Google Scholar 

  27. Gruben, B.S., Makela, M.R., Kowalczyk, J.E., Zhou, M., Benoit-Gelber, I., and de Vries, R.P., Expression-based clustering of CAZyme-encoding genes of Aspergillus niger, BMC Genomics, 2017, vol. 18, no. 1, p. 900. https://doi.org/10.1186/s12864-017-4164-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tani, S., Kanamasa, S., Sumitani, J., Arai, M., and Kawaguchi, T., XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in Aspergillus aculeatus, Curr. Genet., 2012, vol. 58, no. 2, pp. 93–104. https://doi.org/10.1007/s00294-012-0367-5

    Article  CAS  PubMed  Google Scholar 

  29. Xia, C., Gao, L., Li, Z., Liu, G., and Song, X., Functional analysis of the transcriptional activator XlnR of Penicillium oxalicum, J. Appl. Microbiol., 2022, vol. 132, no. 2, pp. 1112–1120. https://doi.org/10.1111/jam.15276

    Article  CAS  PubMed  Google Scholar 

  30. Ilmen, M., Saloheimo, A., Onnela, M.L., and Penttila, M.E., Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei, Appl. Environ. Microbiol., 1997, vol. 63, no. 4, pp. 1298–1306. https://doi.org/10.1128/AEM.63.4.1298-1306.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Llanos, A., Dejean, S., Neugnot-Roux, V., Francois, J.M., and Parrou, J.-L., Carbon sources and XlnR-dependent transcriptional landscape of CAZymes in the industrial fungus Talaromyces versatilis: when exception seems to be the rule, Microb. Cell Fact., 2019, vol. 18, no. 1, p. 14. https://doi.org/10.1186/s12934-019-1062-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Coutinho, P.M., Andersen, M.R., Kolenova, K., van Kuyk, P.A., Benoit, I., Gruben, B.S., Trejo-Aguilar, B., Visser, H., Solingen, P., Pakula, T., Seiboth, B., Battaglia, E., Aguilar-Osorio, G., Jong, J.F., Ohm, R.A., Aguilar, M., Henrissat, B., Nielsen, J., Stalbrand, H., and de Vries, R.P., Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae, Fungal Genet. Biol., 2009, vol. 46, suppl. 1, pp. S161–S169. https://doi.org/10.1016/j.fgb.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  33. Brunner, K., Lichtenauer, A.M., Kratochwill, K., Delic, M., and Mach, R.L., Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum, Curr. Genet., 2007, vol. 52, nos. 5–6, pp. 213–220. https://doi.org/10.1007/s00294-007-0154-x

    Article  CAS  PubMed  Google Scholar 

  34. Tamayo, E.N., Villanueva, A., Hasper, A.A., de Graaff, L.H., Ramon, D., and Orejas, M., CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans, Fungal Genet. Biol., 2008, vol. 45, no. 6, pp. 984–993. https://doi.org/10.1016/j.fgb.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  35. Volkov, P.V., Rozhkova, A.M., Zorov, I.N., and Sinitsyn, A.P., Cloning, purification and study of recombinant GH3 family beta-glucosidase from Penicillium verruculosum, Biochimie, 2020, vol. 168, pp. 231–240. https://doi.org/10.1016/j.biochi.2019.11.009

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 22-24-00997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Rozhkova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors outside the scope of people’s normal professional activities.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Gordon

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: BG, β-glucosidase; СBH, cellobiohydrolase; COS, cello-oligosaccharide; EG, endoglucanase; MCC, microcrystalline cellulose; PCR, polymerase chain reaction; qPCR, quantitative (real-time) PCR; WI, without inducer; XOS, xylo-oligosaccharide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislitsin, V.Y., Chulkin, A.M., Zorov, I.N. et al. The Function of the XlnR Transcription Factor in the Filamentous Fungus Penicillium verruculosum. Appl Biochem Microbiol 59, 1140–1149 (2023). https://doi.org/10.1134/S0003683823090053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823090053

Keywords:

Navigation