Skip to main content
Log in

In Vitro Cell-Based Bioassays for Screening and Comparison of the TNFα and IL-17A Inhibitors

  • METROLOGY, STANDARDIZATION, AND CONTROL
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Based on primary human cell cultures obtained from tissues of juvenile donors, bioassays to assess in vitro the biological activity of TNF-α and IL-17A inhibitors have been developed. The fibrotest-bioassay included the quantification of proinflammatory cytokines MCP-1, IL-6 and IL-8 in human foreskin fibroblasts (HFF) stimulated with TNF-α and IL-17A. The chondrotest-bioassay is based on a cartilage-derived cell culture obtained from six-fingered juvenile donors with polydactyly. Using the chondrotest-bioassay, the biological activities of the TNF-α inhibitor Remicade® (MSD, Ireland) as an original commercial drug and its biosimilar Infliximab® (BIOCAD, Russia) were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Horvath, P., Aulner, N., Bickle, M., Davies, A., Nery, E., Ebner, D., Montoya, M., Ostling, P., Pietiainen, V., Price, L., Shorte, S., and Turcatti, G., Von Schantz C., Carragher N. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov., 2016, vol. 15, no. 11, pp. 751–769. https://doi.org/10.1038/nrd.2016.175

    Article  CAS  PubMed  Google Scholar 

  2. Michelini, E., Cevenini, L., Mezzanotte, L., Coppa, A., and Roda, A., Cell-based assays: fuelling drug discovery, Anal. Bioanal. Chem., 2010, vol. 398, no. 1, pp. 227–238. https://doi.org/10.1007/s00216-010-3933-z

    Article  CAS  PubMed  Google Scholar 

  3. Podgurskaya, A.D., Tsvelaya, V.A., Slotvitsky, M.M., Dementyeva, E.V., Valetdinova, K.R., and Agladze, K.I., The use of iPSC-derived cardiomyocytes and optical mapping for erythromycin arrhythmogenicity testing, Cardiovasc. Toxicol., 2019, vol. 19, no. 6, pp. 518–528. https://doi.org/10.1007/s12012-019-09532-x

    Article  CAS  PubMed  Google Scholar 

  4. Eglen, R. and Reisine, T., Primary cells and stem cells in drug discovery: emerging tools for high-throughput screening, Assay Drug Dev. Technol., 2011, vol. 9, no. 2, pp. 108–124. https://doi.org/10.1089/adt.2010.0305

    Article  CAS  PubMed  Google Scholar 

  5. Dunne, A., Jowett, M., and Rees, S., Use of primary human cells in high-throughput screens, Methods Mol. Biol., 2009, vol. 565, pp. 239–257. https://doi.org/10.1007/978-1-60327-258-2_12

    Article  CAS  PubMed  Google Scholar 

  6. Grinberg, K.N., Kukharenko, V.I., Lyashko, V.N., Terekhov, S.M., Pichugina, E.M., Freidin, M.I., and Chernikov, V.G., Culturing human fibroblasts for the diagnosis of inherited diseases, in Metody kul’tivirovaniya kletok. Sb. nauchn. trudov (Methods of Cell Cultivation. Collection of Scientific Papers), Leningrad: Nauka, 1987, pp. 250–257.

  7. Wang, C.Q.F., Akalu, Y.T., Suarez-Farinas, M., Gonzalez, J., Mitsui, H., Lowes, M.A., Orlow, S.J., Manga, P., and Krueger, J.G., IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis, J. Invest. Dermatol., 2013, vol. 133, no. 12, pp. 2741–2752. https://doi.org/10.1038/jid.2013.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin, D.A., Towne, J.E., Kricorian, G., Klekotka, P., Gudjonsson, J.E., Krueger, J.G., and Russell, C.B., The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings, J. Invest. Dermatol., 2013, vol. 133, no. 1, pp. 17–26. https://doi.org/10.1038/jid.2012.194

    Article  CAS  PubMed  Google Scholar 

  9. Onishi, R.M. and Gaffen, S.L., Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease, Immunology, 2010, vol. 129, no. 3, pp. 311–321. https://doi.org/10.1111/j.1365-2567.2009.03240.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wright, J.F., Bennett, F., Li, B., Brooks, J., Luxenberg, D.P., Whitters, M.J., Tomkinson, K.N., Fitz, L.J., Wolfman, N.M., Collins, M., Dunussi-Joannopoulos, K., Chatterjee-Kishore, M., and Carreno, B.M., IL-17RA/IL-17RC receptor complex cytokine signals through the human IL-17F/IL-17A heterodimeric, J. Immunol. Ref., 2008, vol. 181, pp. 2799–2805. https://doi.org/10.4049/jimmunol.181.4.2799

    Article  CAS  Google Scholar 

  11. Debets, R., Hegmans, J.P., Deleuran, M., Hooft, S., Benner, R., and Prens, E.P., Expression of cytokines and their receptors by psoriatic fibroblasts I. Altered IL-6 synthesis, Cytokine, 1996, vol. 8, no. 1, pp. 70–79. https://doi.org/10.1006/cyto.1996.001011

    Article  CAS  PubMed  Google Scholar 

  12. Beringer, A., Noack, M., and Miossec, P., IL-17 in chronic inflammation: from discovery to targeting, Trends Mol. Med., 2016, vol. 22, no. 3, pp. 230–241. https://doi.org/10.1016/j.molmed.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Kubanov, A.A., Bakulev, A.L., Samtsov, A.V., Khairutdinov, V.R., Sokolovskii, E.V., Kokhan, M.M., Artem’eva, A.V., Chernyaeva, E.V., and Ivanov, R.A., Netakimab, a novel IL-17A inhibitor: results from the 12-week phase III clinical trial BCD-085-7/PLANETA in patients with moderate-to-severe psoriasis vulgaris, Vestn. Dermatol. Venerol., 2019, vol. 95, no. 2, pp. 15–28. https://doi.org/10.25208/0042-4609-2019-95-2-15-28

    Article  Google Scholar 

  14. Ossina, N.K., Pugachev, E.I., Kolyadenko, I.A., Pryazhkina, V.V., Shakurov, E.G., Orlov, E.V., and Volova, L.T., In vitro test system for screening drugs with IL-17A inhibitory activity, Geny Kletki, 2021, vol. 16, no. 1, pp. 43–48. https://doi.org/10.23868/202104006

    Article  Google Scholar 

  15. Declerck, P. and Farouk, R.M., The road from development to approval: evaluating the body of evidence to confirm biosimilarity, Rheumatology (Oxford), 2017, vol. 56, no. 4, pp. 4–13. https://doi.org/10.1093/rheumatology/kex27916

    Article  Google Scholar 

  16. Nesmeyanova, O.B., Plaksina, T.V., Krechikova, D.G., Reshet’ko, O.V., Denisov, L.N., Gordeev, I.G., Pokrovskaya, T.G., Antipova, O.V., Kropotina, T.V., Povarova, T.V., Shesternya, P.A., Ushakova, E.N., Soroka, N.F., Pristrom, A.M., Eremeeva, A.V., Chernyaeva, E.V., Ivanov, R.A., and Usacheva, Yu.V., Comparative efficacy and safety of the biosimilar infliximab (BCD-055) and original infliximab in patients with ankylosing spondylitis (results of international multicenter randomized double-blind phase I and II clinical trials), Sovrem. Revmatol., 2017, vol. 11, no. 3, pp. 14–25. https://doi.org/10.14412/1996-7012-2017-3-14-25

    Article  Google Scholar 

  17. Volova, L.T., Pugachev, E.I., Rossinskaya, V.V., Boltovskaya, V.V., Dolgushkin, D.A., and Ossina, N.K., Rheumatoid arthritis: applicability of ready-to-use human cartilaginous cells for screening of compounds with TNF-alpha inhibitory activity, Biomolecules, 2020, vol. 10, no. 11, p. 1563. https://doi.org/10.3390/biom10111563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santoro, A., Conde, J., Scotece, M., Abella, V., Lopez, V., Pino, J., Gomez, R., Gomez-Reino, J.J., and Gualillo, O., Choosing the right chondrocyte cell line: focus on nitric oxide, J. Orthop. Res., 2015, vol. 33, no. 12, pp. 1784–1788. https://doi.org/10.1002/jor.22954

    Article  CAS  PubMed  Google Scholar 

  19. Sukhanov, Yu.V., Vorotelyak, E.A., Lyadova, I.V., and Vasil’ev, A.V., Mesenchymal stem cell therapy—is the vessel half full or half empty?, Russ. J. Dev. Biol., 2020, vol. 51, no. 4, pp. 267–270. https://doi.org/10.31857/S0475145020040102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Somoza, R.A., Welter, J.F., Correa, D., and Caplan, A.I., Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations, Tissue Eng. Part B Rev., 2014, vol. 20, no. 6, pp. 596–608. https://doi.org/10.1089/ten.teb.2013.0771

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ossina, N.K. and Volova, L.T., Method of using chondral cells for screening substances with anti-inflammatory activity, RF Patent no. 2683277 S1, 2019. https://patents.google.com/patent/RU2683277C1/ru.

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to N.A. Maksimenko, O.P. Danilchenko, and N.V. Komarova for technical assistance and valuable comments.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Ossina.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study was carried out in accordance with the provisions of the Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. The study protocol was approved by the Bioethics Committee of the Samara State Medical University (protocol no. 184 dated May 3, 2017).

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by I. Gordon

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: HFF, human foreskin fibroblasts; IL, interleukin; TNF-α, tumor necrosis factor-α.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ossina, N.K., Pugachev, E.I., Orlov, E.V. et al. In Vitro Cell-Based Bioassays for Screening and Comparison of the TNFα and IL-17A Inhibitors. Appl Biochem Microbiol 59, 1118–1123 (2023). https://doi.org/10.1134/S0003683823080070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823080070

Keywords:

Navigation