Skip to main content
Log in

Point-of-Care Detection of Interleukin-6 using Quantum Dot-based Immunochromatographic Test Strips

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Interleukin-6 (IL-6) is essential for regulating the immune system and initiating acute inflammatory responses. While normal levels of IL-6 are very low in healthy individuals, current detection methods rely primarily on sophisticated instrumentation in central laboratories. Here, we developed a novel fluorescent immunochromatographic test strip method based on CdSe@ZnS quantum dots for point-of-care testing of IL-6. The test strip takes only 20 min to test the sample. Four analysis methods were developed: a self-developed smartphone application, smartphone photographs analyzed with ImageJ, a self-constructed portable immunoanalyzer, and a commercial immunoanalyzer. The performance of these four methods was evaluated and compared. The commercial immunoanalyzer achieved the best limit of detection (LOD) at 2.65 pg/mL, followed by the portable immunoanalyzer (5.74 pg/mL) and ImageJ (8.25 pg/mL). These LODs were sensitive enough to quantify IL-6 in healthy human serum around the clinically relevant cut-off of 10 pg/mL. Despite a higher LOD of 50 pg/mL, customized smartphone application enabled rapid IL-6 quantification and screening, which is useful in resource-scarce areas and well suited for measuring IL-6 levels. The developed method provides a simple, rapid, and portable tool for diagnosing and monitoring IL-6-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Rae, C.I., Young, D.M., Young, H.S., Ill, J. S., and Hee, C. J., Gut Liver, 2023, vol. 17, p. 220356. https://doi.org/10.5009/gnl220356

    Article  Google Scholar 

  2. Kishimoto, T., Annu. Rev. Immunol., 2005, vol. 23, pp. 1–21. https://doi.org/10.1146/annurev.immunol.23.021704.1-15806

    Article  PubMed  CAS  Google Scholar 

  3. Masahiko, M., Misato, H., Hiroto, Y., Miho, S. and Masashi, S., Clin. Sci., 2012, vol. 122, no. 4, pp. 143–159. https://doi.org/10.1042/CS20110340

    Article  CAS  Google Scholar 

  4. Pfäfflin, A. and Schleicher, E., Anal. Bioanal. Chem., 2009, vol. 393, no. 5, pp. 1473–1480. https://doi.org/10.1007/s00216-008-2561-3

    Article  PubMed  CAS  Google Scholar 

  5. Van Snick, J., Annu. Rev. Immunol., 1990, vol. 8, no. 1, pp. 253–278. https://doi.org/10.1146/annurev.iy.08.040190.001345

    Article  PubMed  CAS  Google Scholar 

  6. Wirtz, D.C., Heller, K.D., Miltner, O., Zilkens, K.W., and Wolff, J.M., Int.Orthop., 2000, vol. 24, no. 4, pp. 194–196. https://doi.org/10.1007/s002640000136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bouquet, M., Passmore, M.R., Hoe, L.E.S., Tung, J.P., Simonova, G., Boon, A. C., et al., J. Immunol. Methods, 2020, vol. 486, pp. 112835–112835. https://doi.org/10.1016/j.jim.2020.112835

    Article  PubMed  CAS  Google Scholar 

  8. Lau, C.S., Hoo, S.P., Koh, J.M.J., Phua, S.K., and Aw, T.C., J. Virol. Methods, 2021, vol. 296, p. 114224. https://doi.org/10.1016/j.jviromet.2021.114224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Çetin, A., Şen, A., Çetin, I., Çimen, B., Cimen, L., Savas, G., et al. Turk. J. Biochem., 2018, vol. 43, no. 5, pp. 540–548. https://doi.org/10.1515/tjb-2017-0164

    Article  CAS  Google Scholar 

  10. Kost, G.J., Am. J. Clin. Pathol., 1995, vol. 104, no. 4, pp. S111–127.

    Article  PubMed  CAS  Google Scholar 

  11. Yudong, W., Weipan, P., Qian, Z., Jiafang, P., Bo, Z., Xiaoli, W., et al., Chinese Chem. Lett., 2017, vol. 28, no. 9, pp. 1881–1884. https://doi.org/10.1016/j.cclet.2017.07.026

    Article  CAS  Google Scholar 

  12. Li, F., You, M., Li, S., Hu, J., Liu, C., Gong, Y., et al., Biotechnol. Adv., 2020, vol. 39, p. 107442. https://doi.org/10.1016/j.biotechadv.2019.107442

    Article  PubMed  CAS  Google Scholar 

  13. Yang, X., Wei, F., Tang, Y., and Diao, Y., J. Virol. Methods, 2021, vol. 297, p. 114263. https://doi.org/10.1016/j.jviromet.2021.114263

    Article  PubMed  CAS  Google Scholar 

  14. Man, Y., Lv, X., Iqbal, J., Peng, G., Song, D., Zhang, C., et al., Microchim. Acta, 2015, vol. 182, no. 3, pp. 597–604. https://doi.org/10.1007/s00604-014-1362-y

    Article  CAS  Google Scholar 

  15. Giorgi-Coll, S., Marín, M. J., Sule, O., Hutchinson, P. J., and Carpenter, K. L., Microchim. Acta, 2020, vol. 187, pp.1–11. https://doi.org/10.1007/s00604-019-3975-7

    Article  CAS  Google Scholar 

  16. Man, Y., Lv, X., Iqbal, J., Peng, G., Song, D., Zhang, C., et al., Microchim. Acta, 2015, vol. 182, no. 3–4, pp. 597–604. https://doi.org/10.1007/s00604-014-1362-y

    Article  CAS  Google Scholar 

  17. Lin, S.W., Shen, C.F., Liu, C.C., and Cheng, C.M., Front. Bioeng. Biotech., 2021, vol. 9, p. 752681. https://doi.org/10.3389/fbioe.2021.752681

    Article  Google Scholar 

  18. Zhang, S. and Echegoyen, J., Biochem. Biophys. Rep., 2022, vol. 32, p. 101396. https://doi.org/10.1016/j.bbrep.2022.101396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang, F., Liu, B., Sheng, W., Zhang, Y., Liu, Q., Li, S., et al., Food Chem., 2018, vol. 255, pp. 421–428. https://doi.org/10.1016/j.foodchem.2018.02.060

    Article  PubMed  CAS  Google Scholar 

  20. Wang, C., Yang, X., Gu, B., Liu, H., Zhou, Z., Shi, L., et al., Anal. Chem., 2020, vol. 92, no. 23, pp. 15542–15549. https://doi.org/10.1021/acs.analchem.0c03484

    Article  PubMed  CAS  Google Scholar 

  21. Rahbar, M., Wu, Y., Subramony, J. A., and Liu, G., Front. Bioeng. Biotech., 2021, vol. 9, p. 778269. https://doi.org/10.3389/fbioe.2021.778269

    Article  Google Scholar 

  22. Huang, D., Ying, H., Jiang, D., Liu, F., Tian, Y., Du, C., et al., Anal. Biochem., 2020, vol. 588, p. 113468. https://doi.org/10.1016/j.ab.2019.113468

    Article  PubMed  CAS  Google Scholar 

  23. Di Nardo, F., Anfossi, L., Giovannoli, C., Passini, C., Goftman, V.V., Goryacheva, I.Y., et al., Talanta, 2016, vol. 150, pp. 463–468. https://doi.org/10.1016/j.talanta.2015.12.072

    Article  PubMed  CAS  Google Scholar 

  24. Zou, Z., Du, D., Wang, J., Smith, J.N., Timchalk, C., Li, Y., et al., Anal. Chem., 2010, vol. 82, no. 12, pp. 5125–5133. https://doi.org/10.1021/ac100260m

    Article  PubMed  CAS  Google Scholar 

  25. Qu, H., Zhang, Y., Qu, B., Kong, H., Qin, G., Liu, S., et al., Biosens. Bioelectron., 2016, vol. 81, pp. 358–362. https://doi.org/10.1016/j.bios.2016.03.008

    Article  PubMed  CAS  Google Scholar 

  26. Tang, J., Wu, L., Lin, J., Zhang, E., and Luo, Y., J. Clin. Lab. Anal., 2021, vol. 35, no. 5, p. e23752. https://doi.org/10.1002/jcla.23752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ruppert, C., Kaiser, L., Jacob, L.J., Laufer, S., Kohl, M., and Deigner, H.P., J. Nanobiotechnol., 2020, vol. 18, no. 1, p. 130. https://doi.org/10.1186/s12951-020-00688-1

    Article  CAS  Google Scholar 

  28. Borse, V. and Srivastava, R., Sensor. Actuat. B, Chem., 2019, vol. 280, pp. 24–33. https://doi.org/10.1016/j.snb.2018.10.034

    Article  CAS  Google Scholar 

  29. Mahmoud, M., Ruppert, C., Rentschler, S., Laufer, S., and Deigner, H.P., Sensor. Actuat. B, Chem., 2021, vol. 333, p. 129246. https://doi.org/10.1016/j.snb.2020.129246

    Article  CAS  Google Scholar 

  30. Wang, C., Yang, X., Gu, B., Liu, H., Zhou, Z., Shi, L., et al., Anal. Chem., 2020, vol. 92, no. 23, pp. 15542–15549. https://doi.org/10.1021/acs.analchem.0c03484

    Article  PubMed  CAS  Google Scholar 

  31. Wu, R., Zhou, S., Chen, T., Li, J., Shen, H., Chai, Y., et al., Anal. Chim. Acta, 2018, vol. 1008, pp. 1–7. https://doi.org/10.1016/j.aca.2017.12.031

    Article  PubMed  CAS  Google Scholar 

  32. Passing, H. and Bablok, W., J. Clin. Chem. Clin. Biochem., 1983, vol. 21, no. 11, pp. 709–720. https://doi.org/10.1515/cclm.1983.21.11.709

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (22064008), the Key Research and Development Program of Guilin (2020010323), and the Scientific Research and Technology Development Plan of Guilin (20210217-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pan.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Li, J., Zhang, S. et al. Point-of-Care Detection of Interleukin-6 using Quantum Dot-based Immunochromatographic Test Strips. Appl Biochem Microbiol 59, 946–958 (2023). https://doi.org/10.1134/S0003683823060224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823060224

Keywords:

Navigation