Skip to main content
Log in

OmpA is Involved in the Early Response of Escherichia coli to Antibiotics as a Hub Outer Membrane Protein

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The environmental pollution caused by antibiotics is becoming more and more serious. Outer membrane proteins (OMPs) play key roles in the resistance of bacteria to antibiotics. Transcriptomic profiles of Esherichia coli treated with different types of antibiotics revealed the pathways and response mechanisms of OMP-related genes up- or down-regulated following antibiotics treatment. Among all the 4497 genes, 73 OMPs were screened. In gentamicin- or ampicillin-treated groups, 51 or 23 genes were differentially expressed, respectively. The results of protein-protein interaction networks showed that ompA, chiP, phoE, and cusC were overlapped hub genes in both groups. Considering the scores of nodes calculated by cytoHubba, OmpA was the key one among the OMPs through the calculation of Cytoscape. Finally, the knockout and overexpression mutants and complementation strain of ompA were constructed. The results of drug resistance to 4 types of antibiotics analysis confirmed the role of ompA in the resistance of E. coli to antibiotics. This work provides direct evidence for the role of outer membrane proteins, especially OmpA, in drug resistance of E. coli to different types of antibiotics. The findings in this study can lead to new strategies for improving the effectiveness of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY

All data and materials used in this research are publicly available. Raw sequence data from this study have been submitted to the NCBI sequence read archive under the BioProject accession [PRJNA510855] and available at the following link: https://trace.ncbi.nlm.nih.gov/Traces/sra_sub/sub.cgi?acc=SRP173974. Other supporting data are included as additional files listed below and submitted with the manuscript.

REFERENCES

  1. Dwyer, D.J., Belenky, P.A., Yang, J.H., MacDonald, I.C., Martell, J.D., Takahashi, N., et al., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 20, pp. E2100–E2109. https://doi.org/10.1073/pnas.1401876111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schlomann, B.H., Wiles, T.J., Wall, E.S., Guillemin, K., and Parthasarathy, R., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 43, pp. 21392–21400. https://doi.org/10.1073/pnas.1907567116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J., Cell, 2007, vol. 130, no. 2, pp. 797–810. https://doi.org/10.1016/j.cell.2007.06.049

    Article  CAS  PubMed  Google Scholar 

  4. Ruddaraju, L.K., Pammi, S.V.N., Guntuku, G., Padavala, V.S., and Kolapalli, V.R.M., Asian J. Pharm. Sci., 2020, vol. 15, no. 1, pp. 42–59. https://doi.org/10.1016/j.ajps.2019.03.002

    Article  Google Scholar 

  5. Uzoechi, S.C. and Abu-Lail, N.I., Microsc. Microanal., 2019, vol. 25, no. 1, pp. 135–150. https://doi.org/10.1017/S1431927618015696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ormsby, M.J., Grahame, E., Burchmore, R., and Davies, R.L., J. Proteomics, 2019, vol. 199, pp. 135–147. https://doi.org/10.1016/j.jprot.2019.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horne, J.E., Brockwell, D.J., and Radford, S.E., J. Biol. Chem., 2020, vol. 295, no. 30, pp. 10340–10367. https://doi.org/10.1074/jbc.REV120.011473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin, M., Lu, J., Chen, Z.Y., Nguyen, S.H., Mao, L.K., Li, J.W., et al., Environ. Int., 2018, vol. 120, pp. 421–430. https://doi.org/10.1016/j.envint.2018.07.046

    Article  CAS  PubMed  Google Scholar 

  9. Xia, C.J., Li, S.F., Hou, W.Y., Fan, Z.F., Xiao, H., Lu, M.G., et al., Front. Microbiol., 2017, vol. 8, p. 2427. https://doi.org/10.3389/fmicb.2017.02427

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu, X.J., Chen, H., Huang, C.Y., Zhu, X.Y., Wang, D.S., Liu, X.Y., et al., J. Agric. Food Chem., 2019, vol. 67, no. 19, pp. 5560–5570. https://doi.org/10.1021/acs.jafc.8b07117

    Article  CAS  PubMed  Google Scholar 

  11. Xu, M., Liu, C.L., Luo, J., Qi, Z., Yan, Z., Fu, Y., et al., BMC Genomics, 2019, vol. 20, p. 10. https://doi.org/10.1186/s12864-018-5343-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zheng, Y., Wang, Y., Ding, B., and Fei, Z.J., J. Virol., 2017, vol. 91, no. 11, p. e00247-17. https://doi.org/10.1128/JVI.00247-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, X., Liu, X.R., Pang, X.Y., Yin, Y., Yu, H.C., Yuan, Y.X., et al., BMC Genomics, 2020, vol. 21, no. 1, p. 437. https://doi.org/10.1186/s12864-020-06850-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pang, X.Y., Zhao, S.J., Zhang, M., Cai, L.N., Zhang, Y.Y., and Li, X., Plant Physiol. Biochem., 2021, vol. 158, pp. 497–507. https://doi.org/10.1016/j.plaphy.2020.11.036

    Article  CAS  PubMed  Google Scholar 

  15. Amos, G.C.A., Awakawa, T., Tuttle, R.N., Letzel, A.C., Kim, M.C., Kudo, Y., et al., Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 52, pp. E11121–E11130. https://doi.org/10.1073/pnas.1714381115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ampattu, B.J., Hagmann, L., Liang, C., Dittrich, M., Schlüter, A., Blom, J., et al., BMC Genomics., 2017, vol. 18, p. 282. https://doi.org/10.1186/s12864-017-3616-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sivaranjani, M., Leskinen, K., Aravindraja, C., Saavalainen, P., Pandian, S.K., Skurnik, M., et al., Front. Microbiol., 2019, vol. 10, p. 150. https://doi.org/10.3389/fmicb.2019.00150

    Article  PubMed  PubMed Central  Google Scholar 

  18. Candar-Cakir, B., Arican, E., and Zhang, B.H., Plant Biotechnol. J., 2016, vol. 14, no. 8, pp. 1727–1746. https://doi.org/10.1111/pbi.12533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X., Liu, X.R., Yin, Y., Yu, H.C., Zhang, M., Jing, H.N., et al., Food Funct., 2019, vol. 10, no. 12, pp. 8116–8128. https://doi.org/10.1039/c9fo00809h

    Article  CAS  PubMed  Google Scholar 

  20. Yang, A.M., Yu, L., Chen, Z., Zhang, S.X., Shi, J., Zhao, X.Z., et al., Viruses, 2017, vol. 9, no. 5, p. 115. https://doi.org/10.3390/v9050115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, B.L., Xie, J.J., Du, Z.P., Wu, J.Y., Zhang, P.X., Xu, L.Y., et al., BioMed Res. Int., 2014, vol. 2014, p. 651954. https://doi.org/10.1155/2014/651954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vig, S., Talwar, P., Kaur, K., Srivastava, R., Srivastava, A.K., and Datta, M., Cell Cycle, 2015, vol. 14, no. 14, pp. 2274–2284. https://doi.org/10.1080/15384101.2015.1046654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Y., Cai, Z.H., Zhu, B.A., and Xu, C.S., Genes, 2018, vol. 9, no. 2, p. 92. https://doi.org/10.3390/genes9020092

    Article  CAS  Google Scholar 

  24. Huang, H.J., Luo, B.B., Wang, B.Q., Wu, Q.W., Liang, Y.M., and He, Y., Med. Sci. Monit., 2018, vol. 24, pp. 7697–7709. https://doi.org/10.12659/MSM.912984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, Z., Hu, Y.F., Liao, Z.J., Xu, J., Xu, X.H., Bechthold, A., et al., Front. Microbiol., 2020, vol. 11, p. 2074. https://doi.org/10.3389/fmicb.2020.02074

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, X.Y., Du, Y.L., Hua, Y., Fu, M.Q., Niu, C., Zhang, B., et al., Front. Cell. Infect. Microbiol., 2017, vol. 7, p. 410. https://doi.org/10.3389/fcimb.2017.00410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chapman, J., Orrell-Trigg, R., Kwoon, K.Y., Truong, V.K., and Cozzolino, D., Biotechnol. Bioeng., 2021, vol 118, pp. 1511–1519. https://doi.org/10.1002/bit.27664

    Article  CAS  PubMed  Google Scholar 

  28. Gao, X.X., Yang, X.F., Li, J.H., Zhang, Y., Chen, P., and Lin, Z.L., Microb. Cell Fact., 2018, vol 17, p. 118. https://doi.org/10.1186/s12934-018-0966-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nie, D., Hu, Y., Chen, Z., Li, M.K., Hou, Z., Luo, X.X., et al., J. Biomed. Sci., 2020, vol. 27, no. 1, p. 26. https://doi.org/10.1186/s12929-020-0617-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carlson, M.L., Stacey, R.G., Young, J.W., Wason, I.S., Zhao, Z.Y., Rattray, D.G., et al., Elife, 2019, vol. 8, p. e46615. https://doi.org/10.7554/eLife.46615

    Article  PubMed  PubMed Central  Google Scholar 

  31. Viale, A.M. and Evans, B.A., Microb. Genomics, 2020, vol. 6, no. 6, p. 000381. https://doi.org/10.1099/mgen.0.000381

    Article  CAS  Google Scholar 

  32. Chen, Y.X., Jie, K.W., Li, B.X., Yu, H.Y., Ruan, H., Wu, J., et al., Front. Microbiol., 2020, vol. 11, p. 588952. https://doi.org/10.3389/fmicb.2020.588952

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen, C.X., Hu, H.Z., Li, X.Q., Zheng, Z., Wang, Z.Z., Wang, X.C., et al., IEEE T. Nanobiosci., 2022, vol. 21, no. 1, pp. 37–43. https://doi.org/10.1109/TNB.2021.3105662

    Article  CAS  Google Scholar 

  34. Lin, J., Huang, S.X., and Zhang, Q.J., Microbes Infect., 2002, vol. 4, no. 3, pp. 325–331. https://doi.org/10.1016/S1286-4579(02)01545-9

    Article  CAS  PubMed  Google Scholar 

  35. Choi, U. and Lee, C., Front. Microbiol., 2019, vol. 10, p. 953. https://doi.org/10.3389/fmicb.2019.00953

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to thank Prof. J.A. Imlay for providing wildtype strain MG1655 for this work. We are grateful for the free online platform of Majorbio I-Sanger Cloud Platform (www.i-sanger.com). We would also like to thank English Editing by Elsevier Language Editing Services (Registration no. 331566771). This work was supported by the Natural Science.

Funding

Foundation of Guangdong Province (no. 2019A1515011685) received by Prof. Z. Lu, and Science and Technique Foundation of Henan Province (202102110296) received by Prof. X. Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Pang, S. Gu or X. Li.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Wu, Y., Li, B. et al. OmpA is Involved in the Early Response of Escherichia coli to Antibiotics as a Hub Outer Membrane Protein. Appl Biochem Microbiol 59, 608–621 (2023). https://doi.org/10.1134/S0003683823050204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823050204

Keywords:

Navigation