Skip to main content
Log in

Metabolic Analysis of Indole-degradated Metabolites in Two Acinetobacter spp.

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Indole and its derivatives are typical nitrogen heterocyclic compounds and have been of immense concern since they are known for the risk of their toxic, recalcitrant, and carcinogenic properties for human, animals and ecological environment. Bacteria play vital role in the degradation and biotransformation of such persistent organic and harmful pollutants. In this experiment, Acinetobacter towneri NTA1-2A and Acinetobacter guillouiae TAT1-6A were used to degrade indole. Indole-degradated metabolites were analyzed by metabolomics analysis of fermentation broth of these strains using LC-MS/MS. The metabolomics analysis showed indole-5-carbonitrile 3-benzoyl (C16H10N2O), dimethyl sulfoxide (C2H6OS), deoxyguanosine (C10H13N5O4), Leu (C6H13NO2), and N-nitroso-pyrrolidine were indole-degradated metabolites formed by A. towneri NTA1-2A while neurine (C5H13NO) and norvaline (C5H11NO2) are common metabolites of both strains. The two strains' degradation metabolites differed from those reported in other studies, demonstrating the diversity of the distinct microbial strains approach to the metabolism of indolic compounds. Extracellular enzymes released to culture medium by these bacteria were also identified. In conclusion, the two bacterial strains have a potential of converting notorious indole compound to non-toxic intermediates mediated by enzymes. Hence, future study should focus on biochemical pathway and genetic basis for indole-degradated metabolites in the two strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Mudliar, S., Giri, B., Padoley, K., Satpute D., Dixit R., Bhatt P., et al., J. Environ. Manage., 2010, vol. 91, no. 5, pp. 1039–1054.

    Article  CAS  PubMed  Google Scholar 

  2. Hong, X., Zhang, X., Liu, B., Mao, Y., Liu, Y., and Zhao, L., Res. Microbiol., 2010, vol. 161, no. 8, pp. 687–693.

    Article  CAS  PubMed  Google Scholar 

  3. He, S.Y., Lin, Y.H., Hou, K.Y., and Hwang, S.C., Bioresour. Technol., 2011, vol. 102, no. 10, pp. 5609–5616.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, P., Lv, W., Chen Z., Ma J., Li R., Yao K., et al., Environ. Sci. Pollut. Res., 2015, vol. 22, no.16, pp. 12585–12596.

    Article  CAS  Google Scholar 

  5. Yang, Y., Zhou, J., Xu, Y., Zhang, Y., Luo, L., Chang, K., et al., BioMed. Res. Int., 2017, vol. 2017, pp. 1–10.

    Google Scholar 

  6. Arora, P.K., Sharma, A., and Bae, H., J. Chem., 2015, vol. 2015, pp. 1–13. https://doi.org/10.1155/2015/129159

    Article  CAS  Google Scholar 

  7. Sakamoto, Y., Uchida, M., and Ichihara, K., Med. J. Osaka Univ, 1953, vol. 3, pp. 477–486.

    CAS  Google Scholar 

  8. Fujioka, M. and Wada, H., Biochim. Biophys. Acta, 1968, vol. 158, no. 1, pp. 70–78.

    Article  CAS  PubMed  Google Scholar 

  9. Claus, G. and Kutzner, H.J., Syst. Appl. Microbiol., 1983, vol. 4, no. 2, pp. 169–180.

    Article  CAS  PubMed  Google Scholar 

  10. Doukyu, N. and Anon, R., Extremophiles, 1997, vol. 1, pp. 100–105.

    Article  CAS  PubMed  Google Scholar 

  11. Yin, B., Gu, J., and Wan, N., Int. Biodeterior. Biodegradation, 2005, vol. 56, pp. 243–248. https://doi.org/10.1016/j.ibiod.2005.10.001

    Article  CAS  Google Scholar 

  12. Arora, P.K. and Bae, H., Intern. J. Analyt. Chem., 2014, vol. 2014, pp. 1–5.

    Article  Google Scholar 

  13. Boyd, C., Larkin, M. J., Reid, K. A., Sharma, N. D., and Wilson, K., Appl. Environ. Microbiol., 1997, vol. 63, no.1, pp. 151–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, X., Wang, W., and Xiao, X., Chin. J. Biotechnol., 2008, vol. 24, no. 6, pp. 921–926.

    Article  CAS  Google Scholar 

  15. Yokoyama, M.T.D and Carlson, J.R., Appl. Environ. Microbiol., 1981, vol. 41, pp. 71–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whitehead, T.R, Price, P.N., Drake, H.L., and Cotta, M.A., Appl. Environ.Microbiol., 2008, vol. 74, no. 6, pp 1950–1953. https://doi.org/10.1128/AEM.02458-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukuoka, K., Ozeki Y., and Kanaly, R.A., Biodegradation, 2015, vol. 26, pp. 359–373. https://doi.org/10.1007/s10532-015-9739-0

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J., Zhang, X., Fan, J., Zhang, Z., Ma, Q., and Peng, X., Appl. Biochem. Biotechnol., 2015, vol. 176, no. 5, pp. 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  19. Qu, Y., Ma, Q., Liu, Z., Wang, W., Tang, H., Zhou, J., et al., Mol. Microbiol., 2017, vol. 106, no. 6, pp. 905–918.

    Article  CAS  PubMed  Google Scholar 

  20. Claus, G. and Kutzner, H.J., Syst. Appl. Microbiol., 1983, vol. 4, no. 2, pp. 169–180.

    Article  CAS  PubMed  Google Scholar 

  21. Qu, Y., Ma, Q., Liu, Z., Wang, W., Tang, H., Zhou J., et al., Mol. Microbiol., 2017, vol. 106, no. 6, pp. 905–918.

    Article  CAS  PubMed  Google Scholar 

  22. Lin, G. H., Chen, H. P., and Shu, H.Y., PloS One, 2015, vol. 21, art. 0(9), p. e0138798.

  23. Sadauskas, M., Vaitekunas, J., Gasparaviciute, R., and Meškys, R., Appl. Environ. Microbiol., vol. 83, no. 19, pp. e01453–e01417. https://doi.org/10.1128/AEM.01453-17

  24. Qu, Y., Xu, B., Zhang, X., Ma, Q., Zhou, H., Kong, C. et al., Biochem. Eng. J., 2013, vol. 72, pp. 54–60.

    Article  CAS  Google Scholar 

  25. Yuan, L. J., Liu, J. B., and Xiao, X. G., Afr. J. Biotechnol., 2011, vol. 10, no. 86, pp. 19855–19863.

    CAS  Google Scholar 

  26. Oshima, T., Kawai, S., and Egami, F., J. Biochem., 1965, vol. 58, no. 3, pp. 259–263.

    Article  CAS  PubMed  Google Scholar 

  27. Kunapuli, S. P. and Vaidyanathan, C.S., Plant Physiol., 1983, vol. 71, no. 1, pp. 19–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamatht, A.V. and Vaidyanathan, C.S., Appl. Environ. Microbiol., 1990, Vol. 56, no. 1, pp. 275–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Tesso.

Ethics declarations

The authors declare no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesso, T.A., Liu, G. Metabolic Analysis of Indole-degradated Metabolites in Two Acinetobacter spp.. Appl Biochem Microbiol 59, 462–467 (2023). https://doi.org/10.1134/S0003683823040154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823040154

Keywords:

Navigation