Skip to main content
Log in

Acetyl Phosphate Acetylates Proteins of Streptomyces coelicolor M-145

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Protein Nε-lysine acetylation is a ubiquitous posttranslational modification. Acetylation in eukaryotes and prokaryotes can perform by acetylases or nonenzymatically using acetyl phosphate. Proteins involved in the carbon metabolism of Streptomyces coelicolor M-145 have been determined to be acetylated. Here, acetylation by acetyl phosphate of purified recombinant isocitrate dehydrogenase, malate dehydrogenase, phosphoenolpyruvate carboxylase, and phosphoenolpyruvate carboxykinase from S. coelicolor is reported. The enzymatic activities of isocitrate and malate dehydrogenases were negatively affected by acetylation, suggesting that acetyl phosphate could act as a metabolic regulator of glucose assimilation in this microorganism. To our knowledge, this is the first time that protein acetylation by acetyl phosphate has been reported in a streptomycete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Huang, D., Li, Z-H., You, D., Zhou Y., and Ye, B.-C., Appl. Microbiol. Biotechnol., 2015, vol. 99, pp.1399–1413. https://doi.org/10.1007/s00253-014-6144-2

    Article  CAS  PubMed  Google Scholar 

  2. Yu, B.J., Kim, J.A., Moon, J.H., Ryu, S.E., and Pan, J.G. J., Microbiol. Biotechnol., 2008, vol. 18, pp. 1529–1536.

    CAS  Google Scholar 

  3. Zhang, J., Sprung, R., Pei, J., Tan, X., Kim, S., Zhu, H., et al., Mol. Cell Proteomics, 2009, vol. 8, pp. 215–225. https://doi.org/10.1074/mcp.M800187-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., et al., Science, 2010, vol. 19, pp. 1004–1007. https://doi.org/10.1126/science.1179687

    Article  CAS  Google Scholar 

  5. Kim, D., Yu, B.J., Kim, J.A., Lee, Y.J., Choi, S.G., Kang, S., et al., Proteomics, 2013, vol. 13, pp. 1726–1736. https://doi.org/10.1002/pmic.201200001

    Article  CAS  PubMed  Google Scholar 

  6. Wu, X., Vellaichamy, A., Wang, D., Zamdborg, L., Kelleher, N.L., Huber, S.C., et al., J. Proteomics, 2013, vol. 79, pp. 60–71. https://doi.org/10.1016/j.jprot.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y., Wu, Z.X., Wan, X.L., Liu, P., Zhang, J.B., Ye, Y., et al., Sci. China Chem., 2014, vol. 57, pp. 737–738.

    Article  Google Scholar 

  8. Liu, F., Yang, M., Wang, X., Yang, S., Gu, J., Zhou, J., et al., Mol. Cell Proteomics, 2014, vol. 12, pp. 3352–3366. https://doi.org/10.1074/mcp.M114.041962

    Article  CAS  Google Scholar 

  9. Ishigaki, Y., Akanuma, G., Yoshida, M., Horinouchi, S., Kosono, S., and Ohnishi, Y., J. Proteomics, 2017, vol. 155, pp. 63–72. https://doi.org/10.1016/j.jprot.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y., Zhang, H., Guo, Z., Zou, S., Long, F., Wu, J., et al., Mol. Cell Proteomics, 2021, vol. 20, p. 100148. https://doi.org/10.1016/j.mcpro.2021.100148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao, G. Xie, L., Li, X., Cheng, Z., and Xie, J., J. Proteomics, 2014, vol. 106, pp. 260–269. https://doi.org/10.1016/j.jprot.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  12. Hentchel K.L. and Escalante-Semerena J.C., Microbiol. Mol. Biol. Rev., 2015, vol. 79, pp. 321–346. https://doi.org/10.1128/MMBR.00020-15

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kuhn, M.L., Zemaitaitis, B., Hu, L.I., Sahu, A., Sorensen, D., Minasov, G., et al., PLoS One, 2014, vol. 9, p. e94816. https://doi.org/10.1371/journal.pone.0094816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, M.M., You, D., and Ye, B.C., Sci. Rep., 2017, vol. 7, p. 14790. https://doi.org/10.1038/s41598-017-13897-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kosono, S., Tamura, M., Suzuki, S., Kawamura, Y., Yoshida, A., Nishiyama, M., et al., PLoS One, 2015, vol. 10, p. e0131169. https://doi.org/10.1371/journal.pone.013116916

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castaño-Cerezo, S., Bernal, V., Post, H., Fuhrer, T., Cappadona, S., Sánchez-Díaz, N.C., et al., Mol. Syst. Biol., 2014, vol. 10, p. 762. https://doi.org/10.15252/msb.20145227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Christensen, D.G., Baumgartner, J.T., Xie, X., Jew, K.M., Basisty, N., Schilling, et al., mBio., 2019, vol. 10, p. e02708-18. https://doi.org/10.1128/mBio.02708-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinert, B.T., Iesmantavicius, V., Wagner, S.A., Schölz, C., Gummesson, B., Beli, P., et al., Mol. Cell, 2013, vol. 51, pp. 265–272. https://doi.org/10.1016/j.molcel.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  19. Schilling, B., Christensen, D., Davis, R., Sahu, A.K., Hu, L.I., Walker-Peddakotla, A., et al., Mol. Microbiol., 2015, vol. 98, pp. 847–863. https://doi.org/10.1111/mmi.13161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolfe, A.J., Microbiol. Mol. Biol. Rev., 2005, vol. 69 pp. 12–50. https://doi.org/10.1128/MMBR.69.1.12-50.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takahashi-Iñiguez T., Cruz-Rabadán S., Burciaga-Cifuentes L-M., and Flores M.E., Biosci. Biotech. Biochem., 2014, vol. 78, pp. 1490–1494. https://doi.org/10.1080/09168451.2014.923290

    Article  CAS  Google Scholar 

  22. Verdin, E. and Ott, M., Mol. Cell, 2013, vol. 151, pp. 132–134. https://doi.org/10.1016/j.molcel.2013.07.006

    Article  CAS  Google Scholar 

  23. Klein, A.H., Shulla, A., Reimann, S.A., Keating, D.H., and Wolfe, A.J., J. Bacteriol., 2007, vol. 189, pp. 5574–5581. https://doi.org/10.1128/JB.00564-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank O. Rangel, S.L. Hernández and M. Cariño for their technical support.

Funding

This study was partially supported by grant PAPIIT IN210019 (DGAPA-UNAM), México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Flores.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi-Íñiguez, T., Flores, M.E. Acetyl Phosphate Acetylates Proteins of Streptomyces coelicolor M-145. Appl Biochem Microbiol 59, 450–455 (2023). https://doi.org/10.1134/S0003683823040130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823040130

Keywords:

Navigation