Skip to main content
Log in

Biosurfactant-producing Aspergillus, Penicillium, and Candida Performed Higher Biodegradation of Diesel Oil than a Non-producing Fungal Strain

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The biosurfactant production can enhance the hydrocarbon biodegradation, as the hydrophobicity of these compounds reduces the degradation rates. Much of the attention was given to microbial hydrocarbon biodegradation, while limited work is present regarding the capacity of fungal biosurfactants for enhancing the remediation process. This research work identified the potential of biosurfactant production and hydrocarbon degradation of selected fungal strains belonging to Aspergillus, Penicillium, and Candida genera in contrast to a hydrocarbon-degrading and biosurfactant non-producing fungal strain. The highest biodegradation was noted for Aspergillus niger FA5 (90.7%), followed by Penicillium chrysogenum FP4 and Aspergillus terreus FP6 (87.4 and 85.0%, respectively), and lastly, Candida sp. FG2 (80.1%). Biosurfactant-producing hydrocarbon degrading fungal strains A. niger FA5, P. chrysogenum FP4, A. terreus FP6, and Candida sp. FG2 degraded hydrocarbons 1.32-, 1.27-, 1.24-, and 1.18-fold higher than non-producing A. flavus FP10 (68.6%). When the data were analyzed for correlation, hydrocarbon degradation was found negatively corelated to surface tension (r = –0.747, p = 0.005), while positively correlated with emulsification index (r = 0.964, p < 0.001), and cell hydrophobicity (r = 0.835, p < 0.001). The results indicate that fungi capable of attaching hydrocarbons at high concentration to the cell surface and effectively reducing surface tension were able to exhibit significant improvements in the rate of hydrocarbon degradation. Hence, it is concluded that if a fungus can produce biosurfactant that can improve hydrocarbon emulsification and reduce surface tension, the hydrocarbon breakdown can be accelerated from 12 to 22% compared to non-producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Man, Y.B., Chow, K.L., Cheng, Z., Mo, W.Y., Chan, Y.H., Lam, J.C.W., et al., J. Environ. Sci., 2016, vol. 53, pp. 196–206.

    Article  Google Scholar 

  2. Manzoor, M., Khan, A.H.A., Ullah, R., Khan, M.Z., and Ahmad, I., Arab. J. Sci. Eng., 2016, vol. 41, pp. 2031–2043.

    Article  CAS  Google Scholar 

  3. Khan, A.H.A., Nawaz, I., Qu, Z., Butt, T.A., Yousaf, S., and Iqbal, M., Chemosphere, 2020, vol. 241, p. 125006.

    Article  CAS  PubMed  Google Scholar 

  4. Hussain, F., Hussain, I., Khan, A.H.A., Muhammad, Y.S., Iqbal, M., Soja, G., et al., Environ. Exp. Bot., 2018, vol. 153, pp. 80–88.

    Article  CAS  Google Scholar 

  5. Hussain, F., Khan, A.H.A., Hussain, I., Farooqi, A., Muhammad, Y.S., Iqbal, M., et al., Environ. Sci. Pollut. Res., 2022, vol. 29, no. 6, pp. 9097–9109.

    Article  CAS  Google Scholar 

  6. Khan, A.H.A., Anees, M., Arshad, M., Muhammad, Y.S., Iqbal, M., and Yousaf, S., Sci. Total Environ., 2016, vol. 557, pp. 705–711.

    Article  PubMed  Google Scholar 

  7. Khan, A.H.A., Tanveer, S., Anees, M., Muhammad, Y.S., Iqbal, M., and Yousaf, S. J. Environ. Manage., 2016, vol. 176, pp. 54–60.

    Article  Google Scholar 

  8. Laorrattanasak, S., Rongsayamanont, W., Khondee, N., Paorach, N., Soonglerdsongpha, S., Pinyakong, O., and Luepromchai, E., Water Air Soil Poll., 2016, vol. 227, p. 325.

    Article  Google Scholar 

  9. Lim, M.W., Von-Lau, E., and Poh, P.E., Mar. Pollut. Bull., vol. 109, pp. 14–45.

  10. Brumano, L.P., Soler, M.F., and da Silva, S.S., Ind. Biotechnol., 2016, vol. 12, pp. 31–39.

    Article  CAS  Google Scholar 

  11. Bhardwaj, G., Cameotra, S.S., and Chopra H.K., J. Surfactants Deterg., 2016, vol. 19, pp. 957–965.

    Article  CAS  Google Scholar 

  12. Bhardwaj, G., Cameotra, S.S., and Chopra, H.K., J. Pet. Environ. Biotechnol., 2013, vol. 4, pp. 1–6.

    Article  Google Scholar 

  13. Al-Otibi, F., Al-Zahrani, R.M., and Marraiki, N., Sci. Rep., 2022, vol. 12, p. 10708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Hawash, A.B., Zhang, X., and Ma, F., Microbiologyopen., 2019, vol. 8, article e00619.

    Article  PubMed  Google Scholar 

  15. EL-Hanafy, A.A.E.M., Anwar, Y., Sabir, J.S., Mohamed, S.A., Al-Garni, S.M., Zinadah, O.A.A., and Ahmed, M.M., Biotechnol. Biotechnol. Equip., 2017, vol. 31, pp. 105–111.

    Article  CAS  Google Scholar 

  16. Ishaq, U., Akram, M.S., Iqbal, Z., Rafiq, M., Akrem, A., Nadeem, M., et al., J. Appl. Microbiol., 2015, vol. 119, pp.1035–1045.

    Article  CAS  PubMed  Google Scholar 

  17. Shatila, F., Uyar, E. and Yalçın, H.T., Microbiology, 2021, vol. 90, pp. 839–847.

    Article  CAS  Google Scholar 

  18. Luna, J.M., Rufino, R.D., Sarubbo, L.A., and Campos-Takaki, G.M., Colloids Surf. B, 2013, vol. 102, pp. 202–209.

    Article  CAS  Google Scholar 

  19. Cortés-Camargo, S., Acuña-Avila, P.E., Arrieta-Báez, D., Montañez-Barragán, B., Morato, A.I., Sanz-Martín, J.L. et al., J. Surfactants Deterg., 2021, vol. 24, pp. 773–782.

    Article  Google Scholar 

  20. Uyar, E. and Sağlam, Ö., Arch. Microbiol., 2021, vol. 203, pp. 4929–4939.

    Article  CAS  PubMed  Google Scholar 

  21. Kuyukina, M.S., Ivshina, I.B., Rubtsova, E.V., Ivanov, R.V., and Lozinsky, V.I. Appl. Biochem. Microbiol., 2011, vol. 47, pp. 158–164.

    Article  CAS  Google Scholar 

  22. Rubtsova, E.V., Kuyukina, M.S., and Ivshina, I.B., Appl. Biochem. Microbiol., 2012, vol. 48, pp. 452–459.

    Article  CAS  Google Scholar 

  23. Shekhar, S., Sundaramanickam, A., and Balasubramanian, T., Crit. Rev. Environ. Sci. Technol., 2015, vol. 45, pp. 1522–1554.

    Article  CAS  Google Scholar 

  24. Kumar, A., Singh, S.K., Kant, C., Verma, H., Kumar, D., Singh, P.P., et al., Antioxidants, 2021, vol. 10, p. 1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moldes, A.B., Rodríguez-López, L., Rincón-Fontán, M., López-Prieto, A., Vecino, X., and Cruz, J.M., Int. J. Mol. Sci., 2021, vol. 22, p. 2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saravanan, A., Kumar, P.S., Jeevanantham, S., Harikumar, P., Bhuvaneswari, V. and Indraganti, S., Environ. Technol. Innov., 2022, vol. 25, p. 102116.

    Article  CAS  Google Scholar 

  27. Seydlová, G. and Svobodová, J., Cent. Eur. J. Med., 2008, vol. 3, pp. 123–133.

    Google Scholar 

  28. Kebede, G., Tafese, T., Abda, E.M., Kamaraj, M., and Assefa, F., J. Chem., 2021, vol. 2021, p. 9823362.

    Article  Google Scholar 

  29. Wang, Y., Wan, S., Yu, W., Yuan, D., and Sun, L., Chemosphere, 2022, vol. 304, pp. 135328.

    Article  CAS  PubMed  Google Scholar 

  30. Yesankar, P.J., Pal, M., Patil, A., and Qureshi, A., Int. J. Sci. Environ. Technol., 2022, vol. 2021, pp. 1–22.

    Google Scholar 

  31. Liu, W.J., Duan, X.D., Wu, L.P., and Masakorala, K., Appl. Biochem. Microbiol., 2018, vol. 54, pp. 155–162.

    Article  CAS  Google Scholar 

  32. Luft, L., Confortin, T.C., Todero, I., Zabot, G.L., and Mazutti, M.A., Crit. Rev. Biotechnol., 2020, vol. 40, pp. 1059–1080.

    Article  CAS  PubMed  Google Scholar 

  33. Maamar, A., Lucchesi, M.E., Debaets, S., Nguyen van Long, N., Quemener, M., Coton, E., et al., Diversity, 2020, vol. 12, p. 196.

    Article  CAS  Google Scholar 

  34. Othman, A.R., Ismail, N.S., Abdullah, S.R.S., Hasan, H.A., Kurniawan, S.B., Sharuddin, S.S.N., et al., J. Environ. Chem. Eng., 2022, vol. 10, p. 107621.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are highly thankful for the research faculties provided at Quaid-i-Azam University, Islamabad, Pakistan. Further authors are thankful to Pakistan’s Higher Education Commission for allocating funding (2AV1-084) to Mr. Khan and Dr. Yousaf under the Indigenous 5000 PhDs scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yousaf.

Ethics declarations

The authors declare that manuscript is original, and it is not published in any previous publications. The authors declare they have no conflicts of interest. This work does not contain a description of any studies using humans and animals as subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.H., Tanveer, S., Kiyani, A. et al. Biosurfactant-producing Aspergillus, Penicillium, and Candida Performed Higher Biodegradation of Diesel Oil than a Non-producing Fungal Strain. Appl Biochem Microbiol 59, 282–289 (2023). https://doi.org/10.1134/S0003683823030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823030109

Keywords:

Navigation