Skip to main content
Log in

Decolorization of Dyes in a Bioelectrochemical System Depending on the Immobilization of Shewanella oneidensis Mr-1 Cells on the Anode Surface and Electrical Stimulation of an External Circuit

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of the polarity of the electrical stimulation of the external circuit of the bioelectrochemical systems, as well as the immobilization of Shewanella oneidensis MR-1 cells containing the DyP peroxidase gene on the rate of discoloration of dyes of different types, was found. For the crystal violet triphenylmethane dye, the maximum decolorization rate by suspended S. oneidensis MR-1 cells of 2.05 ± 0.07 μM/h was noted when connecting a 1.2 V direct polarity DC voltage source. One of the minimum rates was observed with reverse polarity of the connection. For cells immobilized on the anode, the rate was higher, reaching 2.91 ± 0.09 μM/h and did not decrease with increasing substrate concentration. The lowest values were also noted for the reverse connection of the voltage source. For the azo dye congo red, the maximum rate was found for a source with direct connection and an open circuit (0.26 ± 0.01 and 0.29 ± 0.02 μM/h, respectively); the minimum value was 0.11 ± 0.02 μM/h for a reverse connection. For crystal violet decolorization products, a significant decrease in the intensity of the main absorption peak at 590 nm band was found, with no notable hypsochromic shift. The qualitative changes in the decolorization product composition were indicated by the appearance, with a direct polarity of the ionistor connection, of a new absorption maximum in the region of 360 nm. The results may be of interest for the development of new methods of bioelectrochemical cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Debabov, V.G., Microbiology (Moscow), 2008, vol. 77, no. 2, pp. 123–131.

    Article  CAS  Google Scholar 

  2. Reshetilov, A.N., Appl. Biochem. Microbiol., 2015, vol. 51, no. 2, pp. 264–270.

    Article  CAS  Google Scholar 

  3. Li, W.-W. and Yu, H.-Q., Biotechnol. Adv., 2015, vol. 33, pp. 1–12.

    Article  PubMed  Google Scholar 

  4. Alferov, S.V., Arlyapov, V.A., Alferov, V.A., and Reshetilov, A.N., Appl. Biochem. Microbiol., 2018, vol. 54, no. 6, pp. 689–694.

    Article  CAS  Google Scholar 

  5. Samkov, A.A., Volchenko, N.N., Khudokormov, A.A., Kalashnikov, A.A., and Veselovskaya, M.V., Politem. Setevoi Elektron. Nauchn. Zh. Kuban. Gos. Agr. Univ., 2014, no. 101, pp. 496–510.

  6. Idris, M.O., Kim, H.-C., Yaqoob, A.A., and Ibrahim, M.N.M., Sust. Energy Technol. Assess, 2022, vol. 52, p. 102183.

    Google Scholar 

  7. Obileke, KeC., Onyeaka, H., Meyer, E.L., and Nwoko, N., Electrochem. Commun., 2021, vol. 125, pp. 1–14.

  8. Wang, X., Hu, J., Chen, Q., Zhang, P., Wu, L., Li, J., et al., Water Res., 2019, vol. 156, pp. 125–135.

    Article  CAS  PubMed  Google Scholar 

  9. Zhi, Z., Pan, Y., Lu, X., Wang, J., and Zhen, G., Sci. Total Environ., 2022, vol. 814. https://doi.org/10.1016/j.scitotenv.2021.152736

  10. Wang, X., Wan, G., Shi, L., Gao, X., Zhang, X., Li, X., Zhao, J., Sha, B., and Huang, Z., Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 31449–31462. https://doi.org/10.1007/s11356-019-05670-5

    Article  CAS  Google Scholar 

  11. Voeikova, T.A., Emel’yanova, L.K., Novikova, L.M., Mordkovich, N.N., Shakulov, R.S., and Debabov, V.G., Microbiology (Moscow), 2012, vol. 81, no. 3, pp. 312–316.

    Article  CAS  Google Scholar 

  12. Voeikova, T.A., Emel’yanova, L.K., Novikova, L.M., Shakulov, R.S., Sidoruk, K.V., Smirnov, I.A., et al., Microbiology (Moscow), 2013, vol. 82, no. 4, pp. 410–414.

    Article  CAS  Google Scholar 

  13. Khmelevtsova, L.E., Sazykin, I.S., Azhogina, T.N., and Sazykina, M.A., Appl. Biochem. Microbiol., 2020, vol. 56, no. 4, pp. 373–380.

    Article  CAS  Google Scholar 

  14. Yang, C., Zhang, J., Zhang, B., Liu, D., Jia, J., Li, F., and Song, H., Synth. Syst. Biotechnol., 2022, vol. 7, pp. 918–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hong, Y., Guo, J., Xu, Z., Mo, C., Xu, M., and Sun, G., Appl. Microbiol. Biotechnol., 2007, vol. 75, pp. 647–654.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, X., Xu, C.-C., Wu, Y.-M., Cai, P.-J., Li, W.-W., Du, D.-L., and Yu, H.-Q., Bioresour. Technol., 2012, vol. 110, pp. 86–90.

    Article  CAS  PubMed  Google Scholar 

  17. Lizarraga, W.C., Mormontoy, C.G., Calla, H., Castaneda, M., Taira, M., Garcia, R., Marin, C., Abanto, M., and Ramirez, P., Biotechnol. Rep., 2022, vol. 33, pp. 1–7.

    Google Scholar 

  18. Shi, J., Zhao, S., Yu, X., Zhou, T., Khan, A., Yu, Z., Feng, P., Wang, J., and Liu, P., Lix, Int. J. Hydrog. Energy, 2019, vol. 44, pp. 10091–10101.

    Article  CAS  Google Scholar 

  19. Ivanova, E.P., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 1773–1788.

    Article  CAS  PubMed  Google Scholar 

  20. Bose, S., Hochell, M.F., Jr., Gorby, Y.A., Kennedy, D.W., McCready, D.E., Madden, A.S., and Lower, B.H., Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 962–976.

    Article  CAS  Google Scholar 

  21. Falina, I.V., Samkov, A.A., and Volchenko, N.N., Nauka Kubani, 2017, no. 2, pp. 4–11.

  22. Berezina, N.P., Timofeev, S.V., and Kononenko, J. Membr. Sci., 2002, vol. 209, pp. 509–518.

    Article  CAS  Google Scholar 

  23. Jadhav, G.S. and Ghangrekar, M.M., Bioresour. Technol., 2009, vol. 100, pp. 717–723.

    Article  CAS  PubMed  Google Scholar 

  24. Tian, J-H., Pourcher, A-M., Klingelschmitt, F., Le Roux, S., and Peu, P., J. Microbiol. Methods, 2016, vol. 130, pp. 148–153.

    Article  CAS  PubMed  Google Scholar 

  25. Samkov, A.A., Dzhimak, S.S., Baryshev, M.G., Volchenko, N.N., Khudokormov, A.A., Samkova, S.M., and Karaseva, E.V., Biophysics (Moscow), 2015, vol. 60, no. 1, pp. 107–112.

    Article  CAS  Google Scholar 

  26. Samkov, A.A., Volchenko, N.N., Khudokormov, A.A., Samkova, S.M., and Karaseva, E.V., Teor. Prikl. Ekol., 2021, no. 1, pp. 194–202.

  27. Chhabra, M., Mishra, S., and Sreekrishnan, T.R., J. Biotechnol., 2009, vol. 143, pp. 69–78.

    Article  CAS  PubMed  Google Scholar 

  28. Singh, R. and Eltis, L.D., Arch. Biochem. Biophys., 2015, vol. 574, pp. 56–65.

    Article  CAS  PubMed  Google Scholar 

  29. Loncar, N., Colpa, D.I., and Fraaije, M.W., Tetrahedron, 2016, vol. 72, pp. 7276–7281.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Ren, J., Wang, Q., Wang, S., Li, S., and Li, H., Biochem. Eng. J., 2021, vol. 168, pp. 1–8.

    Google Scholar 

  31. Kalyani, D.C., Patil, P.S., Jadhav, J.P., and Govindwar, S.P., Bioresour. Technol, 2008, vol. 99, pp. 4635–4641.

    Article  CAS  PubMed  Google Scholar 

  32. Sathishkumar, P., Balan, K., Palvannan, T., Kamala-Kannan, S., Oh, B.-T., and Rodriguez-Couto, S., Clean (Weinh), 2013, vol. 41, pp. 665–672.

    CAS  Google Scholar 

  33. Chen, C.-H., Chang, C.-F., Ho, C.-H., Tsai, T.-L., and Liu, S.-M., Chemosphere, 2008, vol. 72, pp. 1712–1720.

    Article  CAS  PubMed  Google Scholar 

  34. Yemashova, N.A., Kotova, I.B., Netrusov, A.I., and Kalyuzhnyi, S.V., Appl. Biochem. Microbiol., 2009, vol. 45, pp. 176–181.

    Article  CAS  Google Scholar 

  35. Li, C., Luo, M., Zhou, S., He, H., Cao, J., Luo, J., and Fang, F., Int. J. Hydrog. Energy, 2020, vol. 45, pp. 29417–29429.

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the Russian Science Foundation, grant No. 22-24-00401 (https://rscf.ru/project/22-24-00401/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Samkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samkov, A.A., Chugunova, Y.A., Kruglova, M.N. et al. Decolorization of Dyes in a Bioelectrochemical System Depending on the Immobilization of Shewanella oneidensis Mr-1 Cells on the Anode Surface and Electrical Stimulation of an External Circuit. Appl Biochem Microbiol 59, 198–205 (2023). https://doi.org/10.1134/S0003683823020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823020096

Keywords:

Navigation