Skip to main content
Log in

The Application of Sulfate-Reducing Bacteria in the Bioremediation of Heavy Metals and Metalloids

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Pollution of the environment with heavy metals, metalloids, and radionuclides is a global problem that seriously affects the state of the biosphere. In particular, chromium compounds have toxic, mutagenic, and carcinogenic effects. The main principle of purification of anthropogenic and natural ecosystems from chromates is the reduction of Cr(VI) to Cr(III), whose salts are significantly less toxic and insoluble. However, currently used electrochemical and ion-exchange purification methods are quite expensive and require the use of special reagents. At the same time, sulfate-reducing bacteria (SRB) are of particular interest for bioremediation of this kind, since many of them are very resistant to high concentrations of heavy metals and are able to effectively reduce them in the presence of hydrogen as an electron donor. This review summarizes the known data on the interaction of heavy metals, metalloids, and radionuclides with SRB. The features of the metabolism of these microorganisms that lead to intracellular accumulations of heavy metals and metalloids are considered. Complex and finely regulated enzymatic mechanisms for the reduction of toxic metals (using various cytochromes, hydrogenases, oxidoreductases, highly specific metal reductases, and the thioredoxin/thioredoxin reductase systems), as well as the possibility of using immobilized cells and biofilms of SRB in the effective bioremediation of natural waters, soils, and industrial effluents, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Lovley, D.R., Annu. Rev. Microbiol., 1993, vol. 47, pp. 263–290.

    Article  CAS  PubMed  Google Scholar 

  2. Michel, C., Brugna, M., Aubert, C., Bernadac, A., and Bruschi, M., Appl. Microbiol. Biotechnol., 2001, vol. 55, no. 1, pp. 95–100.

    Article  CAS  PubMed  Google Scholar 

  3. Goulhen, F., Gloter, A., Guyot, F., and Bruschi, M., Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 6, pp. 892–897.

    Article  CAS  PubMed  Google Scholar 

  4. Li, X., Fan, M., Liu, L., Chang, J., and Zhang, J., Water Sci. Technol., 2019, vol. 80, no. 12, pp. 2362–2372.

    Article  CAS  PubMed  Google Scholar 

  5. Muyzer, G. and Stams, A.J.M., Nat. Rev. Microbiol., 2008, vol. 6, no. 6, pp. 441–454.

    Article  CAS  PubMed  Google Scholar 

  6. Ravenschlag, K., Sahm, K., Knoblauch, C., Jørgensen, B.B., and Amann, R., Appl. Environ. Microbiol., vol. 66, pp. 3592–3602.

  7. Jørgensen, B.B., Findlay, A.J., and Pellerin, A., Front Microbiol., 2019, vol. 10, p. 849.  https://doi.org/10.3389/fmicb.2019.00849

    Article  PubMed  PubMed Central  Google Scholar 

  8. Minz, D., Flax, J.L., Green, S.J., Muyzer, G., Cohen, Y., Wagner, M., Rittmann, B.E., and Stahl, D.A., Appl. Environ. Microbiol., 1999, vol. 65, no. 10, pp. 4666–4671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Korneeva, V.A., Pimenov, N.V., Krek, A.V., Tourova, T.P., and Bryukhanov, A.L., Microbiology, 2015, vol. 84, no. 2, pp. 297–306.

    Article  Google Scholar 

  10. Ramsing, N.B., Kühl, M., and Jørgensen, B.B., Appl. Environ. Microbiol., 1993, vol. 59, no. 11, pp. 3840–3849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dopson, M. and Johnson, D.B., Environ Microbiol., 2012, vol. 14, no. 10, pp. 2620–2631.

    Article  CAS  PubMed  Google Scholar 

  12. Sorokin, D.Y. and Cherhyh, N.A., Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 2, pp. 396–401.

    Article  CAS  PubMed  Google Scholar 

  13. Jeanthon, C., L’Haridon, S., Cueff, V., Banta, A., Reysenbach, A.L., and Prieur, D., Int. J. Syst. Evol. Microbiol., 2002, vol. 52, no. 3, pp. 765–772.

    CAS  PubMed  Google Scholar 

  14. Brioukhanov, A., Pieulle, L., and Dolla, A., in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Mendez-Vilas, A., Ed., Badajoz: Formatex Research Center, 2010, vol. 2, pp. 148–159.

    Google Scholar 

  15. Li, X. and Krumholz, L.R., J. Bacteriol., 2009, vol. 191, no. 15, pp. 4924–4933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bradl, H.B., Heavy Metals in the Environment: Origin, Interaction and Remediation, London: Elsevier/Academic, 2005.

    Google Scholar 

  17. Herawati, N., Suzuki, S., Hayashi, K., Rivai, I.F., and Koyoma, H., Bull. Environ. Contam. Toxicol., vol. 64, no. 1, pp. 33–39.

  18. Tokar, E.J., Boyd, W.A., Freedman, J.H., and Waalkes, M.P., Toxic effects of metals, in Casarett and Doull’s Toxicology: The Basic Science of Poisons, Klaassen, C.D., Ed., New York: McGraw Hill, 2013, 8th ed., pp. 981–1030.

    Google Scholar 

  19. Nriagu, J.O. and Pacyna, J.M., Nature, 1988, vol. 333, no. 6169, pp. 134–139.

    Article  CAS  PubMed  Google Scholar 

  20. Nriagu, J.O., Nature, 1989, vol. 338, no. 6210, pp. 47–49.

    Article  CAS  Google Scholar 

  21. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., and Sutton, D.J., Exp. Suppl., 2012, vol. 101, pp. 133–164.

    PubMed  Google Scholar 

  22. Kaczynski, S.E. and Kieber, R.J., Environ. Sci. Technol., 1993, vol. 27, no. 8, pp. 1572–1576.

    Article  CAS  Google Scholar 

  23. Richard, F.C. and Bourg, A.C.M., Water Res., 1991, vol. 25, no. 7, pp. 807–816.

    Article  CAS  Google Scholar 

  24. Wang, Y., Su, H., Gu, Y., Song, X., and Zhao, J., Onco. Targets Ther., 2017, vol. 10, pp. 4065–4079.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharma, D.C., Chatterjee, C., and Sharma, C.P., Plant Sci., 1995, vol. 111, no. 2, pp. 145–151.

    Article  CAS  Google Scholar 

  26. Venitt, S. and Levy, L.S., Nature, 1974, vol. 250, no. 5466, pp. 493–495.

    Article  CAS  PubMed  Google Scholar 

  27. Chandra, P., Sinha, S., and Rai, U.N., in Phytoremediation of Soil and Water Contaminants, Kruger, E.L., Anderson, T.A., and Coats, J.R., Eds., ACS Symp. Ser., Washington, DC: Am. Chem. Soc., 1997, no. 664, pp. 274–282.

  28. Kotaś, J. and Stasicka, Z., Environ. Pollut., 2000, vol. 107, no. 3, pp. 263–283.

    Article  PubMed  Google Scholar 

  29. Stein, K. and Schwedt, G., Fresenius’ J. Anal. Chem., 1994, vol. 350, pp. 38–43.

    Article  CAS  Google Scholar 

  30. Bernhoft, R.A., Sci. World J., 2013, p. 394652. https://doi.org/10.1155/2013/394652

  31. Wedepohl, K.H., Geochim. Cosmochim. Acta, 1995, vol. 59, no. 7, pp. 1217–1232.

    Article  CAS  Google Scholar 

  32. Nordberg, G.F., Nogawa, K., Nordberg, M., and Friberg, L., in Handbook on the Toxicology of Metals, Nordberg, G.F., Fowler, B.F., Nordberg, M., and Friberg, L., Eds., Amsterdam: Elsevier, 2007, pp. 445–486.

    Google Scholar 

  33. Jiang, W. and Fan, W., Ann. N.Y. Acad. Sci., 2008, vol. 1140, pp. 446–454.

    Article  CAS  PubMed  Google Scholar 

  34. Stoeppler, M., in Elements and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance, Merian, E., Anke, M., Inhat, M., and Stoeppler, M., Eds., Weinheim: Wiley-VCH, 2004, 2nd ed., pp. 1321–1364.

    Google Scholar 

  35. Rüde, T.R., Beitrage zur Geochemie des Arsens, Karlsruher Geochemische Hefte: Schriftenreihe des Instituts fur Petrographie und Geochemie, 1996, vol. 10, pp. 206–210.

    Google Scholar 

  36. Smedley, P.L. and Kinniburgh, D.G., Appl. Geochem., 2002, vol. 17, no. 5, pp. 517–568.

    Article  CAS  Google Scholar 

  37. Sadler, R., Olszowy, H., Shaw, G., Biltoft, R., and Connell, D., Water Air Soil Pollut., 1994, vol. 78, no. 1, pp. 189–198.

    Article  CAS  Google Scholar 

  38. Chappell, W., Beck, B., Brown, K., Chaney, R., Cothern, C., Irgolic, K., North, D., Thornton, I., and Tsongas, T., Environ. Health Perspect., 1997, vol. 105, no. 10, pp. 1060–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bissen, M. and Frimmel, F.H., Acta Hydrochim. Hydrobiol., 2003, vol. 3l, no. 1, p. 9.

    Article  Google Scholar 

  40. Tchounwou, P.B., Patlolla, A.K., and Centeno, J.A., Toxicol. Pathol., 2003, vol. 31, no. 6, pp. 575–588.

    CAS  PubMed  Google Scholar 

  41. Hughes, M.F., Toxicol. Lett., 2002, vol. 133, no. 1, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  42. McNeal, J.M. and Balistrieri, L.S., Geochemistry and occurrence of selenium: an overview, in Selenium in Agriculture and the Environment, Jacobs, L.W., Ed., Soil Science Society of America, 1989, vol. 23, pp. 1–13.

    Google Scholar 

  43. Lakin, H.W., Geol. Soc. Am. Bull., 1973, vol. 83, no. 1, pp. 181–190.

    Article  Google Scholar 

  44. Emsley, J., Uranium, in Nature’s Building Blocks: An A to Z Guide to the Elements, Emsley, J., Ed., Oxford: Oxford Univ. Press, 2001, pp. 476–482.

    Google Scholar 

  45. Arfsten, D.P., Still, K.R., and Ritchie, G.D., Toxicol. Ind. Health, 2001, vol. 17, nos. 5–10, pp. 180–191.

    Article  CAS  PubMed  Google Scholar 

  46. Macaskie, L.E., Crit. Rev. Biotechnol., 1991, vol. 11, no. 1, pp. 41–112.

    Article  CAS  PubMed  Google Scholar 

  47. Cataldo, D.A., Garland, T.R., Wildung, R.E., and Fellows, R.J., Health Phys., 1989, vol. 57, no. 2, pp. 281–288.

    Article  CAS  PubMed  Google Scholar 

  48. Gvozdyak, P.I., Mogilevich, N.F., Ryl’skii, A.F., and Grishchenko, N.I., Mikrobiologiya, 1986, vol. 55, no. 6, pp. 962–965.

    CAS  Google Scholar 

  49. Yamamoto, K., Kato, J., Yano, T., and Ohtake, H., Biotechnol. Bioeng., 1993, vol. 41, no. 1, pp. 129–133.

    Article  CAS  PubMed  Google Scholar 

  50. Hardoyo, J.K. and Ohtake, H., J. Gen. Appl. Microbiol., 1991, vol. 37, pp. 519–522.

    Article  CAS  Google Scholar 

  51. Lovley, D.R. and Phillips, E.J.P., Appl. Environ. Microbiol., 1992, vol. 58, no. 3, pp. 850–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coleman, M.L., Hedrick, D.B., Lovley, D.R., White, D.C., and Pye, K., Nature, 1993, vol. 361, pp. 436–438.

    Article  CAS  Google Scholar 

  53. Lovley, D.R. and Phillips, E.J.P., Appl. Environ. Microbiol., 1994, vol. 60, no. 2, pp. 726–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Assfalg, M., Bertini, I., Bruschi, M., Michel, C., and Turano, P., Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 15, pp. 9750–9754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chardin, B., Giudici-Orticoni, M.T., De Luca, G., Guigliarelli, B., and Bruschi, M., Appl. Microbiol. Biotechnol., 2003, vol. 63, no. 3, pp. 315–321.

    Article  CAS  PubMed  Google Scholar 

  56. Macy, J.M., Santini, J.M., Pauling, B.V., O’Neill, A.H., and Sly, L.I., Arch. Microbiol., 2000, vol. 173, no. 1, pp. 49–57.

    Article  CAS  PubMed  Google Scholar 

  57. Mabbett, A.N., Lloyd, J.R., and Macaskie, L.E., Biotechnol. Bioeng., 2002, vol. 79, no. 4, pp. 389–397.

    Article  CAS  PubMed  Google Scholar 

  58. Chardin, B., Dolla, A., Chaspoul, F., Fardeau, M.L., Gallice, P., and Bruschi, M., Appl. Microbiol. Biotechnol., 2002, vol. 60, no. 3, pp. 352–360.

    Article  CAS  PubMed  Google Scholar 

  59. Cypionka, H., Annu. Rev. Microbiol., 2000, vol. 54, pp. 827–848.

    Article  CAS  PubMed  Google Scholar 

  60. Franco, L.C., Steinbeisser, S., Zane, G.M., Wall, J.D., and Fields, M.W., Appl. Microbiol. Biotechnol., 2018, vol. 102, no. 6, pp. 2839–2850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu, W., Zheng, D., Li, D., Wei, C., Wang, X., Yang, Q., Tian, C., and Cui, M., Chemosphere, 2021, vol. 279, p. 130437. https://doi.org/10.1016/j.chemosphere.2021.130437

    Article  CAS  PubMed  Google Scholar 

  62. Ohtake, H., Cervantes, C., and Silver, S., J. Bacteriol., 1987, vol. 169, no. 8, pp. 3853–3856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith, W.L. and Gadd, G.M., J. Appl. Microbiol., vol. 88, no. 6, pp. 983–991.

  64. Battaglia-Brunet, F., Foucher, S., Denamur, A., Ignatiadis, I., Michel, C., and Morin, D., J. Ind. Microbiol. Biotechnol., 2002, vol. 28, no. 3, pp. 154–159.

    Article  CAS  PubMed  Google Scholar 

  65. Kim, I.H., Choi, J-H., Joo, J.O., Kim, Y.-K., Choi, J.-W., and Oh, B.-K., J. Microbiol. Biotechnol., 2015, vol. 25, no. 9, pp. 1542–1546.

    Article  CAS  PubMed  Google Scholar 

  66. Lin, W-H., Chen, C.-C., Ou, J.-H., Sheu, Y.-T., Hou, D., and Kao, C.-M., Chemosphere, 2022, vol. 295, p. 133877.

    Article  CAS  PubMed  Google Scholar 

  67. Cheung, K.H. and Gu, J.D., Chemosphere, 2003, vol. 52, no. 9, pp. 1523–1529.

    Article  CAS  PubMed  Google Scholar 

  68. Singh, R., Kumar, A., Kirrolia, A., Kumar, R., Yadav, N., Bishnoi, N.R., and Lohchab, R.K., Bioresour. Technol., 2011, vol. 102, no. 2, pp. 677–682.

    Article  CAS  PubMed  Google Scholar 

  69. Qian, J., Wei, L., Liu, R., Jiang, F., Hao, X., and Chen, G.-H., Sci. Rep., 2016, vol. 6, p. 23694. https://doi.org/10.1038/srep23694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, X., Fan, M., Liu, L., Chang, J., and Zhang, J., Water Sci. Technol., 2019, vol. 80, no. 12, pp. 2362–2372.

    Article  CAS  PubMed  Google Scholar 

  71. Humphries, A.C., Mikheenko, I.P., and Macaskie, L.E., Biotechnol. Bioeng., 2006, vol. 94, no. 1, pp. 81–90.

    Article  CAS  PubMed  Google Scholar 

  72. Naz, N., Young, H.K., Ahmed, N., and Gadd, G.M., Appl. Environ. Microbiol., 2005, vol. 71, no. 8, pp. 4610–4618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang, Y., Zhang, J., Wen, Q., Zheng, J., Zhang, Y., Wei, Q., Qin, Y., and Zhang, X., Biodegradation, 2022, vol. 33, no. 3, pp. 239–253.

    Article  CAS  PubMed  Google Scholar 

  74. Goncalves, M.M., de Oliveira, MelloL.A., and Costa, A.C., Appl. Biochem. Biotechnol., 2008, vol. 147, nos 1-3, pp. 97–105.

    CAS  PubMed  Google Scholar 

  75. Newman, D.K., Beveridge, T.J., and Morel, F.M.M., Appl. Environ. Microbiol., 1997, vol. 63, no. 5, pp. 2022–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., and Morel, F.M., Arch. Microbiol., 1997, vol. 168, no. 5, pp. 380–388.

    Article  CAS  PubMed  Google Scholar 

  77. Upadhyaya, G., Clancy, T.M., Brown, J., Hayes, K.F., and Raskin, L., Environ. Sci. Technol., 2012, vol. 46, no. 21, pp. 11702–11709.

    Article  CAS  PubMed  Google Scholar 

  78. Le Pape, P., Battaglia-Brunet, F., Parmentier, M., Joulian, C., Gassaud, C., Fernandez-Rojo, L., Guigner, J.-M., Ikogou, M., Stetten, L., Olivi, L., Casiot, C., and Morin, G., J. Hazard. Mater., 2017, vol. 321, pp. 764–772.

    Article  CAS  PubMed  Google Scholar 

  79. Sun, J., Hong, Y., Guo, J., Yang, J., Huang, D., Lin, Z., and Jiang, F., Water Res., 2019, vol. 151, pp. 362–370.

    Article  CAS  PubMed  Google Scholar 

  80. Gao, J., Zheng, T., Deng, Y., and Jiang, H., Sci. Total Environ., 2021, vol. 768, p. 144709.

    Article  CAS  PubMed  Google Scholar 

  81. Taylor, B. and Oremland, R., Curr. Microbiol., 1979, vol. 3, pp. 101–103.

    Article  CAS  Google Scholar 

  82. Newport, P.J. and Nedwell, D.B., J. Appl. Bacteriol., 1988, vol. 65, no. 5, pp. 419–423.

    Article  CAS  Google Scholar 

  83. Valente, F.M., Almeida, C.C., Pacheco, I., Carita, J., Saraiva, L.M., and Pereira, I.A., J. Bacteriol., 2006, vol. 188, no. 9, pp. 3228–3235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hockin, S.L. and Gadd, G.M., Appl. Environ. Microbiol., 2003, vol. 69, no. 12, pp. 7063–7072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hockin, S.L. and Gadd, G.M., Environ. Microbiol., 2006, vol. 8, no. 5, pp. 816–826.

    Article  CAS  PubMed  Google Scholar 

  86. Michalke, K., Wickenheiser, E.B., Mehring, M., Hirner, A.V., and Hensel, R., Appl. Environ. Microbiol., 2000, vol. 66, no. 7, pp. 2791–2796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lenz, M., Van Hullebusch, E.D., Hommes, G., Corvini, P.F., and Lens, P.N., Water Res., 2008, vol. 42, nos. 8–9, pp. 2184–2194.

    Article  CAS  PubMed  Google Scholar 

  88. Lovley, D.R., Widman, P.K., Woodward, J.C., and Phillips, E.J.P., Appl. Environ. Microbiol., 1993, vol. 59, no. 11, pp. 3572–3576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lloyd, J.R., Nolting, H.F., Solé, V.A., and Bosecker, K., Geomicrobiol. J., 1998, vol. 15, no. 1, pp. 45–58.

    Article  CAS  Google Scholar 

  90. Lloyd, J.R., Ridley, J., Khizniak, T., Lyalikova, N.N., and Macaskie, L.E., Appl. Environ. Microbiol., 1999, vol. 65, no. 6, pp. 2691–2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lloyd, J.R., Thomas, G.H., Finlay, J.A., Cole, J.A., and Macaskie, L.E., Biotechnol. Bioeng., 1999, vol. 66, no. 2, pp. 122–130.

    Article  CAS  PubMed  Google Scholar 

  92. De Luca, G., de Philip, P., Dermoun, Z., Rousset, M., and Verméglio, A., Appl. Environ. Microbiol., 2001, vol. 67, no. 10, pp. 4583–4587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mohagheghi, A., Updegraff, D.M., and Goldhaber, M.B., Geomicrobiol. J., 1985, vol. 4, no. 2, pp. 153–173.

    Article  CAS  Google Scholar 

  94. Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., and Landa, E.R., Nature, 1991, vol. 350, pp. 413–416.

    Article  CAS  Google Scholar 

  95. Tucker, M.D., Barton, L.L., and Thomson, B.M., J. Ind. Microbiol. Biotechnol., 1998, vol. 20, no. 1, pp. 13–19.

    Article  CAS  PubMed  Google Scholar 

  96. Vannela, R., Hyun, S.P., Hayes, K.F., and Erittmann, B.E., Environ. Sci. Technol., 2014, vol. 48, no. 12, pp. 6928–6937.

    Article  PubMed  Google Scholar 

  97. Elias, D.A., Suflita, J.M., McInerney, M.J., and Krumholz, L.R., Appl. Environ. Microbiol., 2004, vol. 70, no. 1, pp. 413–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lovley, D.R. and Phillips, E.J.P., Environ. Sci. Technol., 1992, vol. 26, no. 11, pp. 2228–2234.

    Article  CAS  Google Scholar 

  99. Tucker, M.D., Barton, L.L., and Thomson, B.M., Appl. Microbiol. Biotechnol., 1996, vol. 46, pp. 74–77.

    Article  CAS  Google Scholar 

  100. Pietzsch, K., Hard, B.C., and Babel, W., A, J. Basic Microbiol., 1999, vol. 39, pp. 365–372.

    Article  CAS  Google Scholar 

  101. Tebo, B.M. and Obraztsova, A.Y., FEMS Microbiol. Lett., 1998, vol. 162, no. 1, pp. 193–198.

    Article  CAS  Google Scholar 

  102. Park, H.S., Lin, S., and Voordouw, G., Antonie van Leeuwenhoek, 2008, vol. 93, nos 1-2, pp. 79–85.

    Article  CAS  PubMed  Google Scholar 

  103. Junier, P., Junier, T., Podell, S., Sims, D.R., Detter, J.C., Lykidis, A., Han, C.S., Wigginton, N.S., Gaasterland, T., and Bernier-Latmani, R., Environ. Microbiol., 2010, vol. 12, no. 10, pp. 2738–2754.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Townsend, L.T., Kuippers, G., Lloyd, J.R., Natrajan, L.S., Boothman, C., Mosselmans, J.F.W., Shaw, S., and Morris, K., ACS Earth Space Chem., 2021, vol. 5, no. 11, pp. 3075–3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Payne, R.B., Gentry, D.M., Rapp-Giles, B.J., Casalot, L., and Wall, J.D., Appl. Environ. Microbiol., 2002, vol. 68, no. 6, pp. 3129–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Holmgren, A., Annu. Rev. Biochem., 1985, vol. 54, pp. 237–271.

    Article  CAS  PubMed  Google Scholar 

  107. Pieulle, L., Stocker, P., Vinay, M., Nouailler, M., Vita, N., Brasseur, G., Garcin, E., Sebban-Kreuzer, C., and Dolla, A., J. Biol. Chem., 2011, vol. 286, no. 10, pp. 7812–7821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Garcin, E.B., Bornet, O., Elantak, L., Vita, N., Pieulle, L., Guerlesquin, F., and Sebban-Kreuzer, C., J. Biol. Chem., 2012, vol. 287, no. 3, pp. 1688–1697.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out within the framework of the Russian Foundation for Basic Research grant 18-04-00622A Transformation of heavy metals and metalloids by sulfate-reducing and heterotrophic alkaliphilic bacteria, the state order on the topic of the Department of Microbiology of Moscow State University “Physiology and biochemistry of phototrophic and chemotrophic microorganisms” (project No. 121032300094-7) and the state order of the Federal Research Center of Biotechnology of the Russian Academy of Sciences (project No. 122041100029-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Khijniak.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryukhanov, A.L., Khijniak, T.V. The Application of Sulfate-Reducing Bacteria in the Bioremediation of Heavy Metals and Metalloids. Appl Biochem Microbiol 58 (Suppl 1), S1–S15 (2022). https://doi.org/10.1134/S0003683822100039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822100039

Keywords:

Navigation