Skip to main content
Log in

Biodestruction of Phthalic Acid Esters by White Rot Fungi

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The ability of white rot fungi from different ecophysiological groups (primary wood-destroying saprotroph Trametes hirsuta, secondary wood-destroying saprotroph Steccherinum ochraceum, litter saprotroph Crucibulum laeve, and humic saprotroph Agrocybe praecox) to degrade phthalic acid esters (PAEs) was studied. It was shown that diethylhexyl phthalate (DEHP) with longer and branched hydrocarbon chains was more rapidly biodegraded by wood-destroying saprotrophs such as T. hirsuta and S. ochraceum, with an efficiency of more than 99%. Dibutyl phthalate (DBP), which is less hydrophobic with shorter hydrocarbon units, was most efficiently transformed by the litter saprotroph C. laeve (up to 96.5%). Diethyl phthalate (DEP) proved to be the most toxic to all fungi. T. hirsuta showed the greatest resistance to elevated DEP concentrations in the medium. It has been shown that fungi destroy PAEs with the formation of various metabolites, depending on the composition of the multienzyme complex of the fungus. Among the secondary metabolites, ionol, an antioxidant formed by fungi when PAEs is added to the medium, was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Weaver, J.A., Beverly, B.E.J., Keshava, N., Mudipalli, A., Arzuaga, X., Cai, C., et al., Environ. Int. J., 2020, vol. 145, no. 105848. https://doi.org/10.1016/j.envint.2020.105848

  2. de Souza, MachadoA.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., Becker, R., et al., Environ. Sci. Technol., 2019, vol. 53, pp. 6044–6052. https://doi.org/10.1021/acs.est.9b01339

    Article  CAS  Google Scholar 

  3. Iqbal, S., Xu, J., Allen, S.D., Khan, S., Nadir, S., Arif, M.S., and Yasmeen, T., Chemosphere, 2020, vol. 260, no. 127578. https://doi.org/10.1016/j.chemosphere.2020.127578

  4. Wormuth, M., Scheringer, M., Vollenweider, M., and Hungerbuhler, K., Risk Analysis, 2026, vol. 26, no. 3, pp. 803–824. https://doi.org/10.1111/j.1539-6924.2006.00770.x

  5. Clark, K.E., David, R.M., Guinn, R., Kramarz, K.W., Lampi, M.A., and Staples, C.A., Hum. Ecol. Risk Assess., 2011, vol. 17, pp. 923–965. https://doi.org/10.1080/10807039.2011.588157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shkaeva, I.E., Solntseva, S.A., Nikulina, O.S., Nikolaev, A.I., Dulov, S.A., and Zemlyanoi, A.V., Toxicol. Rev., 2019, vol. 159, no. 6, pp. 3–9.

    Article  Google Scholar 

  7. Toft, G., Jönsson, B.A.G., Lindh, C.H., Jensen, T.K., Hjollund, N.H., Vested, A., and Bonde, J.P., Environ. Health Perspect., 2012, vol. 120, no. 3, pp. 458–463. https://doi.org/10.1289/ehp.1103552

    Article  CAS  PubMed  Google Scholar 

  8. Kinnear, E.J.C., Miller, K.Y., and Tong, A.Z., Food Addit. Contam., Part A, 2021, pp. 1–12. https://doi.org/10.1080/19440049.2021.1940307

  9. Edwards, L., McCray, N.L., VanNoy, B.N., Yau, A., Geller, R.J., Adamkiewicz, G., and Zota, A.R., J. Exp. Sci. Environ. Epidemiol., 2021. https://doi.org/10.1038/s41370-021-00392-8

  10. Yastrebova, O.V., P’yankova, A.A., and Plotnikova, E.G., Appl. Biochem. Microbiol., 2019, vol. 55, no. 4, pp. 397–404. https://doi.org/10.1134/S0555109919040159

    Article  CAS  Google Scholar 

  11. Jin, D., Baia, Z., Chang, D., Hoefelc, D., Jin, B., Wang, P., Wei, D., and Zhuang, G., J. Hazard. Mater., 2012, vol. 221, pp. 80–85. https://doi.org/10.1016/j.jhazmat.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  12. He, Z., Niu, C., and Lu, Z., J. Hazard. Mater., 2014, vol. 273, pp. 104–109 . https://doi.org/10.1016/j.jhazmat.2014.03.033

    Article  CAS  PubMed  Google Scholar 

  13. Tao, Y., Li, H., Gu, J., Shi, H., Han, S., Jiao, Y., et al., Ecotoxicol. Environ. Saf., 2019, vol. 173, pp. 411–419. https://doi.org/10.1016/j.ecoenv.2019.02.055

    Article  CAS  PubMed  Google Scholar 

  14. Feng, N., Feng, Y., Liang, Q., Chen, X., Xiang, L., Zhao, H., et al., Sci. Total Environ., 2021, no. 761, article ID 143208. https://doi.org/10.1016/j.scitotenv.2020.143208

  15. Hwang, S., Choi, H.T., and Song, H., J. Microbiol. Biotechnol., 2008, vol. 18, no. 4, pp. 767–772.

    CAS  PubMed  Google Scholar 

  16. Aguilar-Alvarado, Y., del Rosario, Baez., Sanchez, M., Martinez-Carrera, D.C., Ahuactzin-Perez, M., and Sanchez, C., Pol. J. Environ. Stud., 2015, vol. 24, no. 5, pp. 1897–1902. https://doi.org/10.15244/pjoes/58808

    Article  CAS  Google Scholar 

  17. Jegede, D.O., Adewuyi, G.O., Gbadamosi, M.R., Oladoye, P.O., Ogunneye, A.L., and Oyewola, O.J., Niger. J. Chem. Res., 2019, vol. 24, no. 2, pp. 77–89.

    CAS  Google Scholar 

  18. González-Márquez, A., Ahuactzin-Pérez, M., and Sánchez, C., Bioresources, 2015, vol. 10, no. 4. https://doi.org/10.15376/biores.10.4.7898-7906

  19. Chen, Y., Zhang, W., Chen, J., Wang, N., Chen, C., Wang, Y., et al., J. Diabetes Res., 2021, article ID 4027380. https://doi.org/10.1155/2021/4027380

  20. Suarez-Segundo, J.L., Vazquez-Lopez, D., Torres-Garcia, J.L., Ahuactzin-Perez, M., Montiel-Martinez, N., Tlecuitl-Beristain, S., and Sanchez, C., Rev. Mex. Ing. Quim., 2013, vol. 12, no. 3, pp. 499–504.

    CAS  Google Scholar 

  21. Savinova, O.S., Moiseenko, K.V., Vavilova, E.A., Tyazhelova, T.V., and Vasina, D.V., Biochimie, 2017, vol. 142, pp. 183–190.

    Article  CAS  Google Scholar 

  22. Moiseenko, K.V., Glazunova, O.A., Shakhova, N.V., Savinova, O.S., Vasina, D.V., Tyazhelova, T.V., et al., Microorganisms, 2019, vol. 7, p. 527. https://doi.org/10.3390/microorganisms7110527

    Article  CAS  PubMed Central  Google Scholar 

  23. Ahuactzin-Perez, M., Tlecuitl-Beristain, S., García-Davila, J., Santacruz-Juarez, E., Gonzalez-Perez, M., Concepcion Gutierrez-Ruíz, M., and Sanchez, C., Fungal Biol., 2018, pp. 1–7. https://doi.org/10.1016/j.funbio.2018.07.001

  24. Hwang, S., Kim, H., Ka, J., and Song, H., J. Microbiol. Biotechnol., 2012, vol. 22, no. 2, pp. 239–243. https://doi.org/10.4014/jmb.1107.07050

    Article  CAS  PubMed  Google Scholar 

  25. Cordoba-Sosa, G., Gonzalez-Marquez, A., Luis, Torres J., Achuactzin-Perez, M., Diaz-Godienez, G., Diaz, R., and Sanchez, C., Proc. 8th Int. Conf. on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi: ICAR-DMR, SOLAN HP and WSMBMP, 2014, 2nd ed., pp. 231–237.

  26. Gao, D. and Wen, Z., Sci. Total Environ., 2016, vol. 541, pp. 986–1001.

    Article  CAS  Google Scholar 

  27. Ahuactzin-Perez, M., Tlecuitl-Beristain, S., García-Davila, J., Santacruz-Juarez, E., Gonzalez-Perez, M., Concepcion Gutierrez-Ruíz, M., and Sanchez, C., 3 Biotech, 2018, vol. 8, no. 42, pp. 1–10. https://doi.org/10.1007/s13205-017-1065-2

  28. Wu, X., Wang, Y., Liang, R., Dai, Q., Jin, D., and Chao, W., Proc. Biochem. Soc., 2011, vol. 46, pp. 1090–1094. https://doi.org/10.1016/j.procbio.2011.01.031

    Article  CAS  Google Scholar 

  29. Chang, B., Yang, C., and Yang, C., Microorganisms, 2021, vol. 9, p. 1989. https://doi.org/10.3390/microorganisms9091989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, Y., Zhang, Y., Jiang, L., Yang, C., and Rittmann, B.E., Biodegradation, 2017. https://doi.org/10.1007/s10532-017-9805-x

  31. Ahmadi, E., Yousefzadeh, S., Ansari, M., Reza Ghaffari, H., Azari, A., Miri, M., et al., Sci. Rep., 2017, vol. 7, p. 41020. https://doi.org/10.1038/srep41020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang, D., Zhang, T., Fang, H.H.P., and He, J., Appl. Microbiol. Biotechnol., 2008, vol. 80, pp. 183–198. https://doi.org/10.1007/s00253-008-1548-5

    Article  CAS  PubMed  Google Scholar 

  33. Zarudii, F.S., Gil’mutdinov, G.Z., Zarudii, R.F., Myshkin, M.A., Gershanov, F.B., and Novikov, T.A., Pharm. Chem. J., 2001, vol. 35, pp. 162–168. https://doi.org/10.1023/A:1010414130628

    Article  CAS  Google Scholar 

  34. Zhao, F., Wang, P., Lucardi, R.D., Su, Z., and Li, S., Toxins, 2020, vol. 12, p. 35. https://doi.org/10.3390/toxins12010035

    Article  CAS  PubMed Central  Google Scholar 

  35. Kumar, V., Sharma, N., and Maitra, S.S., Biotechnol. Rep. (Amst.), 2017, pp. 1–10. https://doi.org/10.1016/j.btre.2017.04.002

  36. Chatterjee, S. and Karlovsky, P., Appl. Microbiol. Biotechnol., 2010, vol. 87, pp. 6–73. https://doi.org/10.1007/s00253-010-2570-y

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (grant no. 21-14-00306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Fedorova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinova, O.S., Shabaev, A.V., Glazunova, O.A. et al. Biodestruction of Phthalic Acid Esters by White Rot Fungi. Appl Biochem Microbiol 58, 598–612 (2022). https://doi.org/10.1134/S0003683822050143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822050143

Keywords:

Navigation