Skip to main content

The Role of Yersinia pestis Antigens in Adhesion to J774 Macrophages: Optical Trapping Study

Abstract

The paper reports the assessment of the role of surface antigens in Yersinia pestis adhesion to murine macrophages J774. The ability of Ail and Psa antigens to adhere to eukaryotic cells has been confirmed using optical trapping and/or passive adhesion methods. The YapF autotransporter was shown for the first time to be an adhesin of Y. pestis. It has been suggested that these antigens do not have complementary receptors on the macrophage surface and their adhesive properties are nonspecific. The results of studying passive adhesion of polystyrene microspheres sensitized with the F1 capsular antigen to J774 macrophages suggest that its inhibiting effect on the adhesion to macrophages is determined not only by spatial shielding of underlying adhesins by the capsule but also by physical and chemical properties of the antigen itself.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. Ke, Y., Chen, Z., and Yang, R., Front. Cell Infect. Microbiol., 2013, vol. 3, p. 106. https://doi.org/10.3389/fcimb.2013.00106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Joutsen, S., Johansson, P., Laukkanen-Ninios, R., Bjorkroth, J., and Fredriksson-Ahomaa, M., Vet. Microbiol., 2020, vol. 247, article ID 108798. https://doi.org/10.1016/j.vetmic.2020.108798

    CAS  Article  PubMed  Google Scholar 

  3. Thomson, J.J., Plecha, S.C., and Krukonis, E.S., Mol. Microbiol., 2019, vol. 111, pp. 82–95. https://doi.org/10.1111/mmi.14140

    CAS  Article  PubMed  Google Scholar 

  4. Tsang, T.M., Wiese, J.S., Felek, S., Kronshage, M., and Krukonis, E.S., PLoS One, 2013, vol. 8, no. 12, article ID e83621. https://doi.org/10.1371/journal.pone.0083621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Yamashita, S., Lukacik, P., Barnard, T.J., Noinaj, N., Felek, S., Tsang, T.M., Krukonis, E.S., Hinnebusch, B.J., and Buchanan, S.K., Structure, 2011, vol. 19, no. 11, pp. 1672–1682. https://doi.org/10.1016/j.str.2011.08.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Lobo, L.A., FEMS Microbiol. Letts., 2006, vol. 262, no. 2, pp. 158–162. https://doi.org/10.1111/j.1574-6968.2006.00382.x

    CAS  Article  Google Scholar 

  7. Sebbane, F., Uversky, V.N., and Anisimov, A.P., Biomolecules, 2020, vol. 10, p. 1554. https://doi.org/10.3390/biom10111554

    CAS  Article  PubMed Central  Google Scholar 

  8. Lahteenmaki, K., Kukkonen, M., and Korhonen, T.K., FEBS Lett., 2001, vol. 504, pp. 69–72. https://doi.org/10.1016/S0014-5793(01)02775-2

    CAS  Article  PubMed  Google Scholar 

  9. Felek, S., Tsang, T.M., and Krukonis, E.S., Infect. Immun., 2010, vol. 78, pp. 4134–4150. https://doi.org/10.1128/IAI.00167-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, F., Chen, H., Galvan, E.M., Lasaro, M.A., and Schifferli, D.M., Infect. Immun., 2006, vol. 74, pp. 5636–5644. https://doi.org/10.1128/IAI.00612-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Huang, X.-Z. and Lindler, L.E., Infect. Immun., 2004, vol. 72, pp. 7212–7219.

    CAS  Article  Google Scholar 

  12. Abramov, V.M., Vasiliev, A.M., Vasilenko, R.N., Kulikova, N.L., Kosarev, I.V., Khlebnikov, V.S., et al., Biochemistry, 2001, vol. 40, pp. 6076–6084.

    CAS  Article  Google Scholar 

  13. Du, Y., Rosqvist, R., and Forsberg, Å., Infect. Immun., 2002, vol. 70, pp. 1453–1460. https://doi.org/10.1128/IAI.70.3.1453-1460.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Roque, A.I., Soliakov, A., Birch, M.A., Philips, S.R., Shah, D.S., and Lakey, J.H., Adv. Mater. (Deerfield Beach, Fla.), 2014, vol. 26, pp. 2704–2616. https://doi.org/10.1002/adma.201304645

    CAS  Article  Google Scholar 

  15. Fedorova, V.A. and Golova, A.B., Vestn. Ross Akad Med. Nauk, 2005, vol. 10, pp. 19–25.

    Google Scholar 

  16. Hinnebusch, B.J., Jarrett, C.O., and Bland, D.M., Biomolecules, 2021, vol. 11, p. 210. https://doi.org/10.3390/biom11020210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Lenz, J.D., Lawrenz, M.B., Cotter, D.G., Lane, M.C., Gonzalez, R.J., Palacios, M., and Miller, V.L., J. Bacteriol., 2011, vol. 193, pp. 5936–5949. https://doi.org/10.1128/JB.05877-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Chauhan, N., Wrobel, A., Skurnik, M., and Leo, J.C., Proteomics Clin. Appl., 2016, vol. 10, nos. 9–10, pp. 949–963. https://doi.org/10.1002/prca.201600012

    CAS  Article  PubMed  Google Scholar 

  19. Yang, K., He, Y., Park, C.G., Kang, Y.S., Zhang, P., Han, Y., Cui, Y., et al., Front. Immunol., 2019, vol. 10, p. 96. https://doi.org/10.3389/fimmu.2019.00096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Osei-Owusu, P., Charlton, T.M., Kim, H.K., Missiakas, D., and Schneewind, O., Nature, 2019, vol. 574, pp. 57–62. https://doi.org/10.1038/s41586-019-1570-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Bohn, E., Sonnabend, M., Klein, K., and Autenrieth, I.B., Int. J. Med. Microbiol., 2019, vol. 309, pp. 344–350. https://doi.org/10.1016/j.ijmm.2019.05.008

    CAS  Article  PubMed  Google Scholar 

  22. Eichelberger, K.R., Sepulveda, V.E., Ford, J., Selitsky, S.R., Mieczkowski, P.A., Parker, J.S., and Goldman, W.E., mSphere, 2020, vol. 5, article ID e00715-20. https://doi.org/10.1128/mSphere.00715-20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Dentovskaya, S.V., Shaikhutdinova, R.Z., and Anisimov, A.P., Adv. Exp. Med. Biol., 2003, vol. 529, pp. 419–421.

    Article  Google Scholar 

  24. Bakhteeva, I.V., Kravchenko, T.B., Titareva, G.M., and Ivanov, S.A., Probl. Osobo Opasnykh Infekts., 2007, vol. 94, pp. 40–44.

    Google Scholar 

  25. Byvalov, A.A., Kononenko, V.L., and Konyshev, I.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 2, pp. 234–243. https://doi.org/10.15789/2220-7619-2019-3-4-437-448

    CAS  Article  Google Scholar 

  26. Kolodziejek, A.M., Hovde, C.J., and Minnich, S.A., Front. Cell Infect. Microbiol., 2012, vol. 2, p. 103. https://doi.org/10.3389/fcimb.2012.00103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Felek, S. and Krukonis, E.S., Infect. Immun., 2009, vol. 77, pp. 825–836. https://doi.org/10.1128/IAI.00913-08

    CAS  Article  PubMed  Google Scholar 

  28. Kolodziejek, A.M., Sinclair, D.J., Seo, K.S., Schnider, D.R., Deobald, C.F., Rohde, H.N., Viall, A.K., Minnich, S.S., Hovde, C.J., Minnich, S.A., and Bohach, G.A., Microbiology (Reading), 2007, vol. 153, pp. 2941–2951. https://doi.org/10.3389/fcimb.2012.00103

    CAS  Article  PubMed  Google Scholar 

  29. Lindler, L.E. and Tall, B.D., Mol. Microbiol., 1993, vol. 8, pp. 311–324.

    CAS  Article  Google Scholar 

  30. Bao, R., Nair, M.K., Tang, W.K., Esser, L., Sadhukhan, A., Holland, R.L., Xia, D., and Schifferli, D.M., Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 1065–1070. https://doi.org/10.1073/pnas.1212431110

    Article  PubMed  Google Scholar 

  31. Leo, J.C. and Skurnik, M., Adv. Exp. Med. Biol., 2011, vol. 715, pp. 1–15. https://doi.org/10.1007/978-94-007-0940-9_1

    CAS  Article  PubMed  Google Scholar 

  32. Hinnebusch, J., Cherepanov, P., Du, Y., Rudolph, A., Dixon, J.D., Schwan, T., and Forsberg, A., Int. J. Med. Microbiol., 2000, pp. 483–487. https://doi.org/10.1016/S1438-4221(00)80070-3

  33. Brown, S.D. and Montie, T.C., Infect. Immun., 1977, vol. 18, pp. 85–93.

    CAS  Article  Google Scholar 

  34. Fan, Y., Zhou, Y., Feng, N., Wang, Q., Tian, G., Wu, X., Liu, Z., Bi, Y., Yang, R., and Wang, X., Microbes Infect., 2016, vol. 18, pp. 329–335.

    CAS  Article  Google Scholar 

  35. Galván, E.M., Chen, H., and Schifferli, D.M., Infect. Immun., 2007, vol. 75, no. 3, pp. 1272–1279. https://doi.org/10.1128/IAI.01153-06

    CAS  Article  PubMed  Google Scholar 

  36. Payne, D., Tatham, D., Williamson, E.D., and Titball, R.W., Infect. Immun., 1998, vol. 66, no. 9, pp. 4545–4548. https://doi.org/10.1128/IAI.66.9.4545-4548.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was partially supported by Scientific Support of Epidemiological Control and Sanitary Protection of the Russian Federation. Development of New Technologies, Means, and Methods of Control and Prophylaxis of Infectious and Parasitic Diseases Sectoral Research Program of the Federal Service for Supervision of Consumer Protection and Welfare for the years 2021–2025 and the grant of the President of the Russian Federation to young Russian scientists (project no. MK-3383.2021.1.4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Dentovskaya or A. A. Byvalov.

Ethics declarations

The authors declare that they do not have a conflict of interest. No experimentation involving animals or humans was performed by any of the authors.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konyshev, I.V., Ivanov, S.A., Kopylov, P.H. et al. The Role of Yersinia pestis Antigens in Adhesion to J774 Macrophages: Optical Trapping Study. Appl Biochem Microbiol 58, 394–400 (2022). https://doi.org/10.1134/S0003683822040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822040081

Keywords:

  • Yersinia pestis
  • macrophage
  • adhesion
  • antigen
  • optical trap