Skip to main content

Aerobic Denitrification of Pseudomonas stutzeri yjy-10 and Genomic Analisis of This Process

Abstract

In this study, Pseudomonas stutzeri yjy-10, an aerobic denitrifier identified by the morphological tests and 16S rDNA analysis was isolated from activated sludge. The bacteria could effectively degrade nitrate nitrogen and the total nitrogen removal rate was more than 91%. The denitrification conditions of P. stutzeri yjy-10 were optimized by single factor experiments (carbon sources, C/N ratio, temperature, and pH). Under the optimum conditions, the removal rate of total nitrogen and chemical oxygen demand (COD) were more than 95%, and no nitrite-nitrogen was detected after 24 h. Furthermore, the bacterium was used in leather production wastewater treatment. After 14 days of operation, all indexes of effluent could meet national effluent standard of the industrial wastewater. The removal rate of COD and total nitrogen reached 89.6 and 90.1%, respectively, and the operating cost was reduced by more than 50%. Moreover, the complete genome of Pseudomonas sp. yjy-10 containing a circular 4.41 Mb chromosome was sequenced. With extensive analysis of the genome, a genetic locus containing 18 genes was predicted to be involved in the aerobic denitrification. Of these genes, 8 related to nitrate reductase were located on the genome of P. stutzeri yjy-10, including 3 genes encoding the periplasmic nitrate reductase. The genes encoding transporters and regulator of aerobic denitrification were also found. The results suggest that P. stutzeri yjy-10 contains the complete aerobic denitrification metabolic pathway and provides a promising foundation for further research.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. Xiang, Y., Xiang, Y., Wang, L., and Jiao, Y., B. Environ. Contam. Toxicol., 2017, vol. 100, pp. 265–270.

    Article  Google Scholar 

  2. Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., et al., Science, 2008, vol. 320, no. 5878, pp. 889–892.

    CAS  Article  Google Scholar 

  3. Cao, L., Wang, J., Xiang, S., Huang, Z., Ruan, R., and Liu, Y., Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 6725–6734.

    CAS  Article  Google Scholar 

  4. Wang, S., Wu, X., Wang, Y., Li, Q., and Tao, M., Ultrason. Sonochem., 2008, vol. 15, no. 6, pp. 933–937.

    CAS  Article  Google Scholar 

  5. Ashok, V. and Hait, S., Environ. Sci. Pollut. R., 2015, vol. 22, pp. 8075–8093.

    CAS  Article  Google Scholar 

  6. Arillo, A., Margiocco, C., Melodia, F., Mensi, P., and Schenone, G., Ecotoxicol. Environ. Saf., 1981, vol. 5, no. 3, pp. 316–328.

    CAS  Article  Google Scholar 

  7. Tilak, K.S., Veeraiah, K., and Raju, J.M., J. Environ. Biol., 2007, vol. 28, no. 1, pp. 45–47.

    CAS  PubMed  Google Scholar 

  8. Deng, B., Fu, L., Zhang, X., Zheng, J., Peng, L., Sun, J., et al., PLoS One, 2014, vol. 9, no. 12, art. ID e114886.

    Article  Google Scholar 

  9. Peng, Y. and Zhu, G., Appl. Microbiol. Biotechnol., 2006, vol. 73, no. 1, pp. 15–26.

    CAS  Article  Google Scholar 

  10. Limpiyakorn, T., Fürhacker, M., Haberl, R., Chodanon, T., Srithep, P., and Sonthiphand, P., Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 4, pp. 1425–1439.

    CAS  Article  Google Scholar 

  11. Lalucat, J., Bennasar, A., Bosch, R., Garcia-Valdes, E., and Palleroni, N.J., Microbiol. Mol. Biol. Rev., 2006, vol. 70, no. 2, pp. 510–547.

    CAS  Article  Google Scholar 

  12. Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., et al., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 21, pp. 7564–7569.

    CAS  Article  Google Scholar 

  13. Su, J.J., Liu, B.Y., and Liu, C.Y., J. Appl. Microbiol., 2001, vol. 90, no. 3, pp. 457–462.

    CAS  Article  Google Scholar 

  14. Takaya, N., Catalan-Sakairi, M.A., Sakaguchi, Y., Kato, I., Zhou, Z., and Shoun, H., Appl. Environ. Microbiol., 2003, vol. 69, no. 6, pp. 3152–3157.

    CAS  Article  Google Scholar 

  15. Yao, S., Ni, J.R., Ma, T., and Li, C., Bioresour. Technol., 2013, vol. 139, pp. 80–86.

    CAS  Article  Google Scholar 

  16. Avila-Arias, H., Avellaneda, H., Garzón, V., Rodríguez, G., et al. J. Appl. Microbiol., 2017, vol. 123, no. 2, pp. 401–413.

    CAS  Article  Google Scholar 

  17. Li, W.J., Xu, P., Schumann, P., Zhang, Y.Q., Pukall, R., Xu, L.H., et al., Int. J. Syst. Evol. Microbiol., 2007, vol. 57, no. 7, pp. 1424–1428.

    Article  Google Scholar 

  18. Kumar, S., Stecher, G., and Tamura, K., Mol. Biol. Evol., 2016, Vol. 33, no. 7, pp. 1870–1874.

    CAS  Article  Google Scholar 

  19. Mikkel, S., BMC Res. Notes, 2016, vol. 9, p. 88.

    Article  Google Scholar 

  20. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., et al., Nucleic Acids Res., 2006, vol. 34, pp. 354–357.

    Article  Google Scholar 

  21. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al., Nat. Genet., 2000, vol. 25, pp. 25–29.

    CAS  Article  Google Scholar 

  22. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., et al., BMC Bioinform., 2003, vol. 4, p. 41.

    Article  Google Scholar 

  23. Brunet-Galmes, I., Busquets, A., Pena, A., Gomila, M., Nogales, B., Garcia-Valdes, E., et al., J. Bacteriol., 2012, vol. 194, no. 23, pp. 6642–6643.

    CAS  Article  Google Scholar 

  24. Li, C., Yang, J., Wang, X., Wang, E., Li, B., He, R., and Yuan, H., Bioresour. Technol., 2015, vol. 182, pp. 18–25.

    CAS  Article  Google Scholar 

  25. Yang, L., Wang, X.H., Cui, S., Ren, Y.X., Yu, J., Chen, N., et al., Bioresour. Technol., 2019, vol. 285, art. ID 121360.

    CAS  Article  Google Scholar 

  26. Gao, J., Zhu, T., Liu, C., Zhang, J., Gao, J., Zhang, J., et al., Bioproc. Biosyst. Eng., 2020, vol. 43, no. 6, pp. 959–969.

    CAS  Article  Google Scholar 

  27. Guo, L., Chen, Q., Fang, F., Hu, Z., Wu, J., Miao, A., et al., Bioresour. Technol. 2013, vol. 142, pp. 45–51.

    CAS  Article  Google Scholar 

  28. Zhao, B., He, Y.L., and Zhang, X.F., Environ. Technol., 2010, vol. 31, no. 4, 409–416.

    CAS  Article  Google Scholar 

  29. Silva, L., Lima, H.S., Mendes, T.A.D.O., Sartoratto, A., Sousa, M.P., Souza, R., et al., Sci. Rep. (UK), 2020, vol. 10, no. 1, p. 2215.

    CAS  Article  Google Scholar 

  30. Deng, B., Fu, L., Zhang, X., Zheng, J., Peng, L., Sun, J., et al., PLos One, 2014, vol. 9, no. 12, art. ID e114886.

    Article  Google Scholar 

  31. Wu, S., Zheng, R., Sha, Z., and Sun, C., Mar. Drugs, 2017, vol. 15, no. 7, p. 218.

    Article  Google Scholar 

  32. Shi, Z., Zhang, Y., Zhou, J., Chen, M., and Wang, X., Bioresour. Technol., 2013, vol. 148, pp. 144–148.

    CAS  Article  Google Scholar 

  33. Peng, Y. and Zhu, G., Appl. Microbiol. Biotechnol., 2006, vol. 73, no. 1, pp. 15–26.

    CAS  Article  Google Scholar 

  34. Zhao, B., He, Y.L., Hughes, J., and Zhang, X.F., Bioresour. Technol., 2010, vol. 101, no. 14, pp. 5194–5200.

    CAS  Article  Google Scholar 

  35. Li, A., Gai, Z., Cui, D., Ma, F., Yang, J., Zhang, X., et al., J. Bacteriol., 2012, vol. 194, no. 20, pp. 5720–5720.

    CAS  Article  Google Scholar 

Download references

Funding

This work is supported by Postdoctoral Program for Innovative Talent of Shandong province (SDBX2020021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Tian or Y. Tian.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, J., He, F., Cheng, Z. et al. Aerobic Denitrification of Pseudomonas stutzeri yjy-10 and Genomic Analisis of This Process. Appl Biochem Microbiol 58, 294–301 (2022). https://doi.org/10.1134/S0003683822030139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822030139

Keywords:

  • genome
  • Pseudomonas
  • aerobic denitrification
  • bioremediation