Skip to main content
Log in

Production of Diadinoxanthin in an Intensive Culture of the Diatomaceous Alga Cylindrotheca closterium (Ehrenb.) Reimann et Lewin. and Its Proapoptotic Activity

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The production of diadinoxanthin and its cytostatic activity in an intensive culture of C. closterium has been estimated via molecular modeling and experiments with the human tumor cell cultures OVCAR5, OVCAR8, KURAMOCHI, and OVSAHO. According to data from both the simulation and experiments with the cell cultures, diadinoxanthin demonstrates lower activity (by more than four times) in comparison with fucoxanthin. The IC50 value for diadinoxanthin is achieved at a concentration of more than 100 μM, while fucoxanthin exhibits a cytostatic effect below 18.75 μM. In a flow-through culture of C. closterium, the production of diadinoxanthin can exceed the production of fucoxanthin by 14 times, which can make the technology for its production less expensive and can significantly reduce the cost of therapeutic and prophylactic drugs based on microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. De la Cuesta, J.L. and Manley, S.L., Limnol. Oceanogr., 2009, vol. 54, pp. 1653–1664. https://doi.org/10.4319/lo.2009.54.5.1653

    Article  Google Scholar 

  2. Wang, Z., Li, H., Dong, M., Zhu, P., and Cai, Y., J. Cancer Res. Clin. Oncol., 2019, vol. 145, no. 2, pp. 293–301. https://doi.org/10.1007/s00432-019-02841-2

  3. Wang, C., Chen, X., Nakamura, Y., Yu, C., and Qi, H., Food Function, 2020, vol. 11, no. 11, pp. 9338–9358. https://doi.org/10.1039/d0fo02176h

    Article  CAS  PubMed  Google Scholar 

  4. Méresse, S., Fodil, M., Fleury, F., and Chénais, B., Int. J. Mol. Sci., 2020, vol. 21, no. 23, pp. 1–27. https://doi.org/10.3390/ijms21239273

    Article  CAS  Google Scholar 

  5. Jaswir, I., Noviendri, D., Taher, M., Mohamed, F., Octavianti, F., Lestari, W., et al., Molecules, 2019, vol. 24, no. 5, pp. 1–16. https://doi.org/10.3390/molecules24050947

    Article  CAS  Google Scholar 

  6. Satomi, Y., Anticancer Res., 2017, vol. 37, no. 4, pp. 1557–1562. https://doi.org/10.21873/anticanres.11484

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, S.R., Hosokawa, M., and Miyashita, K., Mar. Drugs, 2013, vol. 11, pp. 5130–5147. https://doi.org/10.3390/md11125130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gevorgiz, R.G., Zheleznova, S.N., Zozulya, Yu.V., Uvarov, I.P., Repkov, A.P., and Lelekov, A.S., Aktual. Vopr. Biol. Fiz. Khim., 2016, vol. 1, pp. 73–77.

    Google Scholar 

  9. Lu, X., Sun, H., Zhao, W., Cheng, K.-W., Chen, F., and Liu, B., Mar. Drugs, 2018, vol. 16, no. 7, pp. 1–13. https://doi.org/10.3390/md16070219

    Article  CAS  Google Scholar 

  10. Kuczynska, P., Jemiola-Rzeminska, M., and Strzalka, K., Mar. Drugs, 2015, vol. 13, no. 9, pp. 5847–5881. https://doi.org/10.3390/md13095847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo, B.LiuB., Yang, B., Sun, P., Lu, X., Liu, J., et al., Mar. Drugs, 2016, vol. 14, no. 7, pp. 1–14. https://doi.org/10.3390/md14070125

    Article  CAS  Google Scholar 

  12. Jin, Y., Qiu, S., Shao, N., and Zheng, J., Med. Sci. Monit., 2018, vol. 24, pp. 11–18. https://doi.org/10.12659/MSM.905360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, K.N., Heo, S.J., Kang, S.M., Ahn, G., and Jeon, Y.J., Toxicol. in Vitro, 2010, vol. 24, no. 6, pp. 1648–1654. https://doi.org/10.1016/j.tiv.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  14. Foo, S.C., Yusoff, F.M., Imam, M.U., Foo, J.B., Ismail, N., Azmi, N.H., et al., Biotechnol. Rep. (Amst.), 2019, vol. 21, pp. 1–11. https://doi.org/10.1016/j.btre.2018.e00296

  15. Wu, H.L., Fu, X.Y., Cao, W.Q., Xiang, W.Z., Hou, Y.J., Ma, J.K., et al., J. Agric. Food Chem., 2019, vol. 67, no. 8, pp. 2212–2219. https://doi.org/10.1021/acs.jafc.8b07126

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, Y., Cheng, J., Min, Z., Yin, T., Zhang, R., Zhang, W., et al., J. Cell Biochem., 2018, vol. 119, no. 9, pp. 7274–7284. https://doi.org/10.1002/jcb.27022

    Article  CAS  PubMed  Google Scholar 

  17. Zheleznova, S.N., Gevorgiz, R.G., Bobko, N.I., and Lelekov, A.S., Aktual. Biotekhnol. 2015, vol. 14, no. 3, pp. 46–48.

    Google Scholar 

  18. Zheleznova, S.N. and Gevorgiz, R.G., Aktual. Vopr. Biol. Fiz. Khim., 2020, vol. 5, no. 1, pp. 201–207.

    Google Scholar 

  19. Ryabushko, V.I., Zheleznova, S.N., and Nekhoroshev, M.V., Algologiya, 2017, vol. 27, no. 1, pp. 15–21. https://doi.org/10.15407/alg27.01.015

    Article  Google Scholar 

  20. Jeffrey, S.W., Mantoura, R.F.C., and Wright, S.W., JMBA, 1997, vol. 77, no. 3, p. 661. https://doi.org/10.1017/S0025315400036389

    Article  Google Scholar 

  21. Hashimoto, T., Ozaki, Y., Taminato, M., Dass, S.K., Mizuno, M., Yoshimura, K., et al., Br. J. Nutr., 2009, vol. 102, no. 2, pp. 242–248. https://doi.org/10.1017/S0007114508199007

    Article  CAS  PubMed  Google Scholar 

  22. Whittle, S.J. and Casselton, P.J., Br. Phycol. J., 1975, vol. 10, no. 2, pp. 192–204. https://doi.org/10.1080/00071617500650181

    Article  Google Scholar 

  23. Kuczynska, P. and Jemiola-Rzeminska, M.I., Appl. Phycol., 2017, vol. 29, pp. 79–87. https://doi.org/10.1007/s10811-016-0961-x

    Article  CAS  Google Scholar 

  24. Englert, G., Biornland, T., and Liaaen-Jensen, S., Magn. Reson. Chem., 1990, vol. 28, no. 6, pp. 519–528. https://doi.org/10.1002/mrc.1260280610

    Article  CAS  Google Scholar 

  25. Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., and Miyashita, K., Biochem. Biophys. Res. Commun., 2005, vol. 332, no. 2, pp. 392–397. https://doi.org/10.1016/j.bbrc.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  26. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., et al., J. Med. Chem., 2004, vol. 47, no. 7, pp. 1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  27. Burley, S.K., Berman, H.M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., et al., Nucleic Acids Res., 2019, vol. 47 (database issue), pp. D464–D474. https://doi.org/10.1093/nar/gky1004

  28. Sastry, G.M., Adzhigirey, M., Day, T., Annabhimoju, R., and Sherman, W., J. Comput. Aided Mol. Des., 2013, vol. 27, no. 3, pp. 221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  29. Wu, C., Jin, X., Tsueng, G., Afrasiabi, C., and Su, A.I., Nucleic Acids Res., 2016, vol. 44, no. D1, pp. 313–316. https://doi.org/10.1093/nar/gkv1104

    Article  CAS  Google Scholar 

  30. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M., Nucleic Acids Res., 2016, vol. 44, no. D1, pp. 457–462. https://doi.org/10.1093/nar/gkv1070

    Article  CAS  Google Scholar 

  31. Rampogu, S., Son, M., Baek, A., Park, C., Rana, R.M., Saravanan, A.Z., et al., Comput. Biol. Chem., 2018, vol. 74, pp. 327–338. https://doi.org/10.1016/j.compbiolchem.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  32. Yoshioka, T., Shien, K., Namba, K., Torigoe, H., Sato, H., Tomida, S., et al., Cancer Sci., 2018, vol. 109, no. 4, pp. 1166–1176. https://doi.org/10.1111/cas.13546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harris, F.R., Zhang, P., Yang, L., Hou, X., Leventakos, K., Weroha, S.J., et al., Mol. Oncol., 2019, vol. 13, no. 2, pp. 132–152. https://doi.org/10.1002/1878-0261.12414

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.A. Akimov (Institute for Molecular Medicine Finland, HiLIFE) and Doctor of Philosophy T. Maoka (Research Institute for Production Development, Kyoto, Japan) for their help in the experimental work with cell cultures and the identification of carotenoids.

Funding

The work was carried out within the framework of the state assignment of the InBYuM Federal Research Center on the topic “Study of mechanisms to control production processes in biotechnological complexes in order to develop scientific foundations to obtain biologically active substances and technical products of marine genesis” (State registration no. 121030300149-0) and the state assignment of the Ministry of Education and Science of the Russian Federation within the framework of the project for the creation and development of world-class research centers, “Digital biodesign and personalized healthcare” (State registration no. 075-15-2020-926).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. G. Gevorgiz or M. A. Gureev.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorgiz, R.G., Gureev, M.A., Zheleznova, S.N. et al. Production of Diadinoxanthin in an Intensive Culture of the Diatomaceous Alga Cylindrotheca closterium (Ehrenb.) Reimann et Lewin. and Its Proapoptotic Activity. Appl Biochem Microbiol 58, 261–268 (2022). https://doi.org/10.1134/S0003683822010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822010033

Keywords:

Navigation