Skip to main content
Log in

Identification of Core Cellulolytic Enzymes from the Talaromyces cellulolyticus Strains Y-94 and S6-25

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The cellulose-degrading fungus strain Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) Y-94, which was isolated in 1982 from soil in Japan, and strain S6-25, a derivative of Y-94 with higher cellulase productivity, are fungi that exhibit promise as alternatives to Trichoderma reesei for the industrial production of cellulase. MALDI-TOF MS analysis of the T. cellulolyticus Y-94 protein secretome demonstrated that strain Y-94 expressed and secreted a broad spectrum of proteins for the degradation of hemicellulose, starch, or pectin; these proteins include 2 types of α-L-arabinofuranosidases, 2 types of putative glucoamylases, Streptomyces laminarinase-like protein, mutanase, α-amylase, polysaccharide lyase family 6/pectate lyase 3, and β-N-acetylhexosaminidase. The cellulase system of strain S6-25 had the same cellobiohydrolases (Cel6A and Cel7A), β-glucosidase (Bgl3A), xylanase (Xyl10A), and endoglucanase (Cel5A) as strain CF-2612, another derivative of Y-94. However, instead of Cel7B, S6-25 cells expressed another endoglucanase (Cel5C). Two cellobiohydrolases, Cel7A and Cel6A, represented approximately 60% (wt/wt) of the proteins secreted by the strain and were the main enzymes of the cellulase complex. The increase in cellulase complex activity in the S6-25 strain compared with Y-94 may be explained, at least partly, by the presence of an additional copy of the cel7A gene in the cellular genome, which was confirmed by RT-qPCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Sajith, S., Priji, P., Sreedevi, S., and Benjamin, S., Int. J. Food Sci. Nutr., 2016, vol. 6, pp. 1–13. https://doi.org/10.4172/2155-9600.1000461

    Article  CAS  Google Scholar 

  2. Ikeda, Y., Hayashi, H., Okuda, N., and Park, E.Y., Biotechnol. Prog., 2007, vol. 23, pp. 333–338. https://doi.org/10.1021/bp060201s

    Article  CAS  PubMed  Google Scholar 

  3. Gusakov, A.V., Trends Biotechnol., 2011, vol. 29, pp. 419–425. https://doi.org/10.1016/j.tibtech.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Payne, C.M., Knott, B.C., Mayes, H.B., Hansson, H., Himmel, M.E., Sandgren, M., et al., Chem. Rev., 2015, vol. 115, pp. 1308−1448. https://doi.org/10.1021/cr500351c

    Article  CAS  PubMed  Google Scholar 

  5. Yamanobe, T., Mitsuishi, Y., and Takasaki, Y., Agric. Biol. Chem., 1987, vol. 51, pp 65–74. https://doi.org/10.1080/00021369.1987.10867998

    Article  CAS  Google Scholar 

  6. Fujii, T., Fang, X., Inoue, H., Murakami, K., and Sawayama, S., Biotechnol. Biofuels, 2009, vol. 2, p. 24. https://doi.org/10.1186/1754-6834-2-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amore, A., Giacobbe, S., and Faraco, V., Curr. Genomics, 2013, vol. 14, pp. 230–249. https://doi.org/10.2174/1389202911314040002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. JP Patent no. 4025848, 2007.

  9. Fang, X., Yano, S., Inoue, H., and Sawayama, S., J. Biosci. Bioeng., 2009, vol. 107, pp. 256–261. https://doi.org/10.1016/j.jbiosc.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  10. Inoue, H., Decker, S.R., Taylor II, L.E., Yano, S., and Sawayama, S., Biotechnol. Biofuels, 2014, vol. 7, no. 151, pp. 1–13. https://doi.org/10.1186/s13068-014-0151-5

    Article  CAS  Google Scholar 

  11. Fujii, T., Hoshino, T., Inoue, H., and Yano, S., FEMS Microbiol. Lett., 2014, vol. 351, pp. 32–41. https://doi.org/10.1111/1574-6968.12352

    Article  CAS  PubMed  Google Scholar 

  12. JP Patent no. 6515810, 2019.

  13. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  14. Miller, G.L., Anal. Chem., 1959, vol. 31, no. 3, pp. 426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  15. Dumina, M.V., Zhgun, A.A., Novak, M.I., Domratcheva, A.G., Petukhov, D.V., Dzhavakhiya, V.V., et al., World J. Microbiol. Biotechnol., 2014, vol. 30, no. 11, pp. 2933–2941. https://doi.org/10.1007/s11274-014-1721-1

    Article  CAS  PubMed  Google Scholar 

  16. Kansarn, S., Matsushita, N., Kono, T., and Okada, G., J. Appl. Glycosci., 2000, vol. 47, pp. 177–186. https://doi.org/10.5458/jag.50.21

    Article  CAS  Google Scholar 

  17. Kansarn, S., Nihira, T., Hashimoto, E., Suzuki, M., Kono, T., and Okada, G., J. Appl. Glycosci., 2000, vol. 47, pp. 293–302. https://doi.org/10.5458/jag.47.293

    Article  CAS  Google Scholar 

  18. Mitsuishi, Y., Yamanobe, T., Yagisawa, M., and Takasaki, Y., Agric. Biol. Chem., 1987, vol. 51, pp. 3207–3213. https://doi.org/10.1271/bbb1961.51.3207

    Article  CAS  Google Scholar 

  19. Nihira, T., Kansarn, S., Kono, T., and Okada, G., J. Appl. Glycosci., 2001, vol. 48, pp. 45–54. https://doi.org/10.5458/jag.48.45

    Article  CAS  Google Scholar 

  20. Nihira, T., Kansarn, S., Kono, T., and Okada, G., J. Appl. Glycosci., 2003, vol. 50, pp. 21–25. https://doi.org/10.5458/jag.50.21

    Article  CAS  Google Scholar 

  21. Schulz, B. and Boyle, C., Mycol. Res., 2005, vol. 109, pp. 661–686. https://doi.org/10.1017/s095375620500273x

    Article  PubMed  Google Scholar 

  22. Morales, G., Melero, J.A., Iglesias, J., and Paniagua, M., J. Adv. Chem. Eng., 2014, vol. 4, no. 1, pp. 1–3. https://doi.org/10.4172/2090-4568.1000e101

    Article  CAS  Google Scholar 

  23. Robl, D., da Silva Delabona, P., Mergel, C., Rojas, J.D., dos Santos Costa, P., Pimentel, I.C., et al., BMC Biotechnol., 2013, vol. 94, pp. 13–94. https://doi.org/10.1186/1472-6750-13-94

    Article  CAS  Google Scholar 

  24. Seethikal, D.S.D., Govind, S.R., and Jogaiah, S., Int. J. Pharm. Pharm. Sci., 2015, vol. 7, suppl. 1, pp. 205–211.

    CAS  Google Scholar 

  25. Baramee, S., Teeravivattanakit, T., Phitsuwan, P., Waeonukul, R., Pason, P., Tachaapaikoon, C., et al., Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 3, pp. 1175–1188. https://doi.org/10.1007/s00253-016-7895-8

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J., Liu, W.D., Zhao, X.L., Shen, W.J., Cao, H., and Cui, Z.L., Appl. Microbiol. Biotechnol., 2011, vol. 89, no. 4, pp. 1083–1092. https://doi.org/10.1007/s00253-010-2828-4

    Article  CAS  PubMed  Google Scholar 

  27. Kamal, S., Khan, S.U., Muhammad, N., Shoaib, M., Omar, M., Kaneza, P., et al., Biochem. Mol. Biol., 2018, vol. 3, no. 1, pp. 15–35. https://doi.org/10.11648/j.bmb.20180301.13

    Article  Google Scholar 

  28. Li, C.X., Zhao, S., Zhang, T., Xian, L., Liao, L.S., Liu, J.L., and Feng, J.X., Sci. Rep., 2017, vol. 7, no. 490, pp. 1–10. https://doi.org/10.1038/s41598-017-00567-0

    Article  CAS  Google Scholar 

  29. Portnoy, T., Margeot, A., Linke, R., Atanasova, L., Fekete, E., Sandor, E., et al., BMC Genomics, 2011, vol. 12, no. 269, pp. 1–12. https://doi.org/10.1186/1471-2164-12-269

    Article  CAS  Google Scholar 

  30. Sun, J. and Glass, N. L., PLoS One, 2011, vol. 6, no. 9, art. e25654. https://doi.org/10.1371/journal.pone.0025654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Z.H., Yao, G.S., Wu, R.M., Gao, L.W., Kan, Q.B., Liu, M., et al., PLoS Genet., 2015, vol. 11. no. 9, pp. 1–45. art. e1005509. https://doi.org/10.1371/journal.pgen.1005509

  32. Liao, G.Y., Zhao, S., Zhang, T., Li, C.X., Liao, L.S., Zhang, F.F., et al., Biotechnol. Biofuels, 2018, vol. 11, no. 276, pp. 1–17. https://doi.org/10.1186/s13068-018-1276-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Ptitsyn.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptitsyn, L.R., Yampolskaya, T.A., Kutukova, E.A. et al. Identification of Core Cellulolytic Enzymes from the Talaromyces cellulolyticus Strains Y-94 and S6-25. Appl Biochem Microbiol 57 (Suppl 1), S38–S45 (2021). https://doi.org/10.1134/S0003683821100100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821100100

Keywords:

Navigation