Skip to main content
Log in

Molecular Characterization of Integrons and Their Association with Antibiotic Resistance in Acinetobacter baumannii Isolated from Hospitals in Jeddah

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The drug resistance pattern of infectious A. baumannii isolates of Saudi Arabia was evaluated and the integrons in samples were characterized. The isolates were obtained from patients of King Abdulaziz University Hospital, Jeddah, Saudi Arabia. The aim of this study was to investigate the association between drug resistance and the presence of integrons in A. baumannii isolates. A total 84 A. baumannii isolates were collected from different sources. Identification of isolates was carried out by conventional methods as well as by VITEK 2 technology system. Antibiotic resistance of A. baumannii isolates was determined by disc diffusion method. PCR amplification was conducted to detect the presence of intI1, intI2, intI3 in isolates. Majority of the isolates (66.7%) were found resistant to 5 or more antibiotics while gentamicin was proved to be most inhibitory. All resistant A. baumannii isolates were also positive for class 1 integrons with gene cassettes of different sizes. On the other hand, all except one antibiotic sensitive isolate was devoid of any class 1 integrons. The DNA sequencing of PCR amplified class I integrons revealed the presence of different gene cassettes such as aac(3)-Ia, dfrA15, aac(6')-Ib, dfrA17, dfrA7, aadA5 etc. The obtained results are compelling for a strong association between antibiotic resistance and the presence of class 1 integrons in these A. baumannii isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Roca, I., Espinal, P., Vila-Farrés, X., and Vila, J., Front. Microbiol., 2012, vol. 3, p. 148.

    Article  Google Scholar 

  2. Visca, P., Seifert, H., and Towner, K. J., IUBMB Life, 2011, vol. 63 no. 12, pp. 1048–1054.

    Article  CAS  Google Scholar 

  3. Yang, Q., Xu, Y.-C., Kiratisin, P., and Dowzicky, M.J., Diag. Microbiol. Infect. Dis., 2017, vol. 89, pp. 314–323.

    Article  CAS  Google Scholar 

  4. Xie, R., Zhang, X.D., Zhao, Q., Peng, B., and Zheng, J., Emerg. Microbes Infect., 2018, vol. 7.

  5. Gillings, M. R., Xuejun, D., Hardwick, S. A., Holley, M. P., and Stokes, H. W., ISME J., 2009, vol. 3 no. 2, pp. 209–215.

    Article  CAS  Google Scholar 

  6. Nemergut, D. R., Martin, A. P., and Schmidt, S. K., Appl. Environ. Microbiol., 2004, vol. 70, no. 2, pp. 1160–1168.

    Article  CAS  Google Scholar 

  7. Collis, C. M., Kim, M.-J., Partridge, S. R., Stokes, H. W., and Hall, R. M., J. Bacteriol., 2002, vol. 184, no. 11, pp. 3017–3026.

    Article  CAS  Google Scholar 

  8. Juma, N.A., Manning, G., and Forsythe, S.J., Food Control, 2016, vol. 68, pp. 162–166.

    Article  CAS  Google Scholar 

  9. Yang, M.-Y., Chang, K.-C., Chen, L.-Y., Wang, P.-C., Chou, C.-C., Wu, Z.-B., et al., J. Photochem. Photobiol. B: Biol., 2018, vol. 180, pp. 235–242.

    Article  CAS  Google Scholar 

  10. Huang, C., Long, Q., Qian, K., Fu, T., Zhang, Z., Lia-o, P., et al., New Microbes New Infect., 2015, vol. 8, pp. 103–108.

    Article  CAS  Google Scholar 

  11. El-Shazly, S., Dashti, A., Vali, L., Bolaris, M., and Ibrahim, A. S., Int. J. Infect. Dis., 2015, vol. 41, pp. 42–49.

    Article  CAS  Google Scholar 

  12. Yadav, S.K., Bhujel, R., Hamal, P., Mishra, S.K., Sharma, S., and Sherchand, J.B., Infect. Drug. Resist., 2020, vol. 13, pp. 725–732.

    Article  Google Scholar 

  13. Rodríguez, C.H., Nastro, M., Fiorilli, G., Dabos, L., Calvo, J.L., Fariña, M.E., et al., J. Chemother., 2016, vol. 28, pp. 25–27.

    Article  Google Scholar 

  14. Teerawattanapong, N., Panich, P., Kulpokin, D., Ranong, S.N., Kongpakwattana, K., Saksinanon, A., et al., Infect. Cont. Hosp. Epidemiol., 2018, vol. 39, pp. 525–533.

    Article  Google Scholar 

  15. Cambray, G., Guerout, A.-M., and Mazel, D., Annu. Rev. Genet., 2010, vol. 44, pp. 141–166.

    Article  CAS  Google Scholar 

  16. Rizk, D. E. and El-Mahdy, A. M., Microb. Pathol., 2017, vol. 112, pp. 50–56.

    Article  CAS  Google Scholar 

  17. van Hoek, A.H.A.M., Mevius, D., Guerra, B., Mullany, P., Roberts, A.P., and Aarts, H.J.M., Front. Microbiol., 2011, vol. 2.

  18. Lemay-St-Denis, C., Diwan, S.-S., and Pelletier, J.N., Antibiotics, 2021, vol. 10, p. 433.

    Article  CAS  Google Scholar 

  19. Pereira, M.B., Österlund, T., Eriksson, K.M., Backhaus, T., Axelson-Fisk, M., and Kristiansson, E., BMC Genomics, 2020, vol. 21 no.1, p. 495.

    Article  Google Scholar 

  20. Hunter, R. C., Asfour, F., Dingemans, J., Osuna, B. L., Samad, T., Malfroot, A., et al., mBio, 2013, vol. 4, no. 4.

  21. Seyedmohammad, S., Fuentealba, N. A., Marriott, R. A. J., Goetze, T. A., Edwardson, J. M., Barrera, N. P., et al., Biosci. Rep., 2016, vol. 36, no. 2.

  22. Domínguez, M., Miranda, C. D., Fuentes, O., de la Fuente, M., Godoy, F. A., Bello-Toledo, H., et al., Front. Microbiol., 2019, vol. 10.

  23. Evangelopoulos, D., Gupta, A., Lack, N. A., Maitra, A., ten Bokum, A. M. C., Kendall, S., et al., Tuberculosis, 2014, vol. 94, no. 6, pp. 664–671.

    Article  CAS  Google Scholar 

  24. Fluit, A. C. and Schmitz, F.-J., Clin. Microbiol. Infect., 2004, vol. 10, no. 4, pp. 272–288.

    Article  CAS  Google Scholar 

  25. Rosser, S. J. and Young, H.-K., J. Antimicrob. Chemother., 1999, vol. 44, no. 1, pp. 11–18.

    Article  CAS  Google Scholar 

  26. Salimizand, H., Shahcheraghi, F., Kalantar, E., and Badmasti, F., Iran J. Microbiol., 2013, vol. 5, no. 1, pp. 48–55.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G-436-141-37). The author, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Alam.

Ethics declarations

Conflict of interest. The author declares no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. Patients were informed about the study and verbal consents were obtained from all of them before taking samples. The samples were collected according to the guidelines of the Ethical Committee of King Abdulaziz University Hospital, Jeddah, Saudi Arabia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.Z. Molecular Characterization of Integrons and Their Association with Antibiotic Resistance in Acinetobacter baumannii Isolated from Hospitals in Jeddah. Appl Biochem Microbiol 57 (Suppl 1), S64–S70 (2021). https://doi.org/10.1134/S0003683821100021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821100021

Keywords:

Navigation