Skip to main content
Log in

Obtainment and Characterization of Alhagi persarum Boiss. et Buhse Callus Cell Cultures that Produce Isoflavonoids

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The physiological characteristics of callus cell cultures of Alhagi persarum Boiss et Buhse, a representative of the legume family widely used in folk medicine, have been studied. It was shown that the explant source is an important factor influencing the efficiency of callus initiation: more intense callus formation (almost 100%) was observed for explants excised from various organs of sterile seedlings as compared to intact plants (less than 30%). As a result, more than 20 lines of morphologically different callus cultures were obtained, and the growth parameters were determined for the five lines with the most intensive growth. The composition of fatty acids (FAs) of total lipids and secondary metabolites in the most physiologically stable callus line, Ar-207, was analyzed. Nineteen individual C12–C24 FAs were identified via capillary gas-liquid chromatography with mass spectrometric detection; the majority of them were palmitic (~23%), stearic (~22%), linoleic (~14%), or α-linolenic (~33%) acids. The established atypical composition of FAs (a simultaneous high content of both saturated FAs and polyunsaturated α-linolenic acid) is likely due to the adaptation of cells to in vitro growth conditions. Phytochemical analysis of secondary metabolites was carried out with ultra-performance liquid chromatography and mass spectrometric detection via electrospray ionization. Compounds belonging to different structural groups of isoflavones were found. Aglycones (calycosin, formononetin and afrormosin isomer), glycosides (formononetin glucoside), and esters of glucosides (malonylglycosides of calycosin, formononetin, afrormosin isomers, glycitein, and genistein) were detected. These secondary metabolites are widespread in plants of the Fabaceae family; however, isoflavones are rare in representatives of the Alhagi genus. The presence of malonylated isoflavone glycosides in Alhagi ssp. was shown for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Atta, A.H. and Mouneir, S.M., Antidiarrhoeal activity of some Egyptian medicinal plant extracts, J. Ethnopharmacol., 2004, vol. 92, nos. 2–3, pp. 303–309. https://doi.org/10.1016/j.jep.2004.03.017

    Article  PubMed  Google Scholar 

  2. Amani, A.S., Maitland, D.J., and Soliman, G.A., Antiulcerogenic activity of Alhagi maurorum, Pharm. Biol., 2006, vol. 44, no. 4, pp. 292–296. https://doi.org/10.1080/13880200600714160

    Article  Google Scholar 

  3. Naseri, M.K.G. and Mard, S.A., Gastroprotective effect of Alhagi maurorum on experimental gastric ulcer in rats, Pak. J. Med. Sci., 2007, vol. 23, no. 4, pp. 570–573. www.pjms.com.pk/issues/julsep07/pdf/alhagi.pdf

    Google Scholar 

  4. Alqasoumi, S.I., Al-Rehaily, A.J., AlSheikh, A.M., and Abdel-Kader, M.S., Evaluation of the hepatoprotective effect of Ephedra foliate, Alhagi maurorum, Capsella bursapastoris and Hibiscus sabdariffa against experimentally induced liver injury in rats, Nat. Prod. Sci., 2008, vol. 14, no. 2, pp. 95–99. www.koreascience.or.kr/article/JAKO200824067121756.pdf.

    CAS  Google Scholar 

  5. Al-Douri, N.A. and Al-Essa, L.Y., A survey of plants used in Iraqi traditional medicine, Jordan J. Pharm. Sci., 2010, vol. 3, no. 2, pp. 100–108.

    Google Scholar 

  6. Shaker, E., Mahmoud, H., and Mnaa, S., Anti-inflammatory and anti-ulcer activity of the extract from Alhagi maurorum (camelthorn), Food Chem. Toxicol., 2010, vol. 48, no. 10, pp. 2785–2790. https://doi.org/10.1016/j.fct.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  7. Neamah, N.F., A Pharmacological evaluation of aqueous extract of Alhagi maurorum, Global J. Pharmacol., 2012, vol. 6, no. 1, pp. 41–46. Corpus ID: 34561203

  8. Amiri, M., Pouliot, P., Bonnery, C., et al., An exploration of the effect of hemodynamic changes due to normal aging on the fNIRS response to semantic processing of words, Front. Neurol., 2014, vol. 5, p. 249. https://doi.org/10.3389/fneur.2014.00249

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marashdah, M.S. and Al-Hazimi, H.M., Pharmacological activity of ethanolic extract of Alhagi maurorum roots, Arab. J. Chem., 2010, vol. 3, no. 1, pp. 39–42. https://doi.org/10.1016/j.arabjc.2009.12.007

    Article  CAS  Google Scholar 

  10. Marashdah, M.S. and Farraj, A.L., Pharmacological Activity of 2% aqueous acetic acid extracts of Alhagi maurorum roots, J. Saudi Chem. Soc., 2010, vol. 14, no. 3, pp. 247250. https://doi.org/10.1016/j.jscs.2010.02.015

    Article  CAS  Google Scholar 

  11. Abu, TalebA.M., El-Deeb, K., and Alotibi, F.O., Bioactivity of some plant extracts against Drechslera biseptata and Fusarium solani, J. Food Agr. Environ., 2011, vol. 9, no. 3, pp. 769–774. https://doi.org/10.1234/4.2011.2408

    Article  Google Scholar 

  12. Awaad, A.S., El-Meligy, R.M., Qenawy, S.A., et al., Antiinflammatory, antinociceptive and antipyretic effects of some desert plants, J. Saudi Chem. Soc., 2011, vol. 15, no. 4, pp. 367–373. https://doi.org/10.1016/j.jscs.2011.02.004

    Article  Google Scholar 

  13. Rahman, S.M.A., Abd-Ellatif, S.A., Deraz, S.F., and Khalil, A.A., Antibacterial activity of some wild medicinal plants collected from western Mediterranean coast, Egypt: natural alternatives for infectious disease treatment, Afr. J. Biotechnol., 2011, vol. 10, pp. 10733–10743. https://doi.org/10.5897/AJB11.007

    Article  Google Scholar 

  14. Saatchi, A., Kadivar, M., Zad, S.S., and Abaee, M.S., Application of some antifungal and antioxidant compounds extracted from some herbs to be used in cakes as biopreservatives, J. Agr. Sci. Tech. Iran, 2014, vol. 16, pp. 561–568. http://jast.modares.ac.ir/article-23-5655-en.html.

    CAS  Google Scholar 

  15. Towhidi, A., Nutritive value of some herbages for dromedary camel in Iran, Pak. J. Biol. Sci., 2007, vol. 10, no. 1, pp. 167–170. https://doi.org/10.3923/pjbs.2007.167.170

    Article  CAS  PubMed  Google Scholar 

  16. Towhidi, A. and Zhandi, M., Chemical composition, in vitro digestibility and palatability of nine plant species for dromedary camels in the province of Semnan, Iran. Egypt. J. Biol., 2007, vol. 9, pp. 47–52. www.ajol.info/ index.php/ejb/article/view/56553.

    Google Scholar 

  17. Piri, A., Palangi, A., and Eivazi, P., The determination of nutritive value of Alhagi by in situ and gas production techniques, Eur. J. Exp. Biol., 2012, vol. 2, no. 3, pp. 846–849. www.imedpub.com/abstract/the-determinationof-nutritive-value-of-ialhagii-by-iin-situi-and-igasproduction-techniquesi-16432.html.

    CAS  Google Scholar 

  18. Ahmad, S., Riaz, N., Saleem, M., et al., Antioxidant flavonoids from Alhagi maurorum, J. Asian Nat. Prod. Res., 2010, vol. 12, no. 2, pp. 138–143. https://doi.org/10.1080/10286020903451724

    Article  CAS  PubMed  Google Scholar 

  19. Muhammad, G., Hussain, M.A., Anwar, F., et al., Alhagi: a plant genus rich in bioactives for pharmaceuticals, Phytother. Res., 2015, vol. 29, no. 1, pp. 1–13. https://doi.org/10.1002/ptr.5222

    Article  PubMed  Google Scholar 

  20. Georgiev, M., Weber, J., and Maciuk, A., Bioprocessing of plant cell cultures for mass production of targeted compounds, Appl. Microbiol. Biotechnol., 2009, vol. 83, pp. 809–823. https://doi.org/10.1007/s00253-009-2049-x

    Article  CAS  PubMed  Google Scholar 

  21. Nosov, A.M., Functions of secondary plant metabolites in vivo and in vitro, Fiziol. Rast., 1994, vol. 41, no. 6, pp. 873–878.

    CAS  Google Scholar 

  22. Nosov, A.M., Popova, E.V., and Kochkin, D.V., Isoprenoid production via plant cell cultures: biosynthesis, accumulation and scaling-up to bioreactors, in Production of Biomass and Bioactive Compounds Using Bioreactor Technology, Paek, K.-Y., et al., Eds., Dordrecht: Springer Science+Business Media, 2014, pp. 563–623. https://doi.org/10.1007/978-94-017-9223-3_23

  23. Kochkin, D.V., Kachala, V.V., Shashkov, A.S., et al., Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens, Phytochemistry, 2013, vol. 93, pp. 18–26. https://doi.org/10.1016/j.phytochem.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  24. Kochkin, D.V., Khandy, M.T., Zaitsev, G.P., et al., Protodioscin in Dioscorea deltoidea suspension cell culture, Chem. Nat. Compd., 2016, vol. 52, no. 4, pp. 664–668. https://doi.org/10.1007/s10600-016-1734-0

    Article  CAS  Google Scholar 

  25. Khandy, M.T., Titova, M.V., Konstantinova, S.V., et al., Formation of protodioscin and deltoside isomers in suspension cultures of Nepal yam (Dioscorea deltoidea Wall.) cells, Appl. Biochem. Microbiol., 2016, vol. 52, no. 6, pp. 657–662. https://doi.org/10.1134/S0003683816060077

    Article  CAS  Google Scholar 

  26. Awmack, C.S. and Lock, J.M., The genus Alhagi (Leguminosae: Papilionoideae) in the Middle East, Kew Bull., 2002, vol. 57, no. 2, pp. 435–443. https://doi.org/10.2307/4111121

    Article  Google Scholar 

  27. Bharal, S. and Rashid, A., Tissue culture of Alhagi camelorum—a legume of high regenerative capacity, Physiol. Plant., 1981, vol. 53, pp. 497–500. https://doi.org/10.1111/j.1399-3054.1981.tb02739.x

    Article  CAS  Google Scholar 

  28. Hassanein, A.M. and Mazen, A.M.A., Adventitious bud formation in Alhagi graecorum, Plant Cell, Tissue Organ Cult., 2001, vol. 65, pp. 31–35. https://doi.org/10.1023/A:1010637407780

    Article  CAS  Google Scholar 

  29. Wang, Y.M., Wang, B.J., Luo, D., and Jia, F.J., Regeneration of plants from callus tissue of hairy roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi, Cell Res., 2001, vol. 11, no. 4, pp. 279–284. https://doi.org/10.1038/sj.cr.7290097

    Article  CAS  PubMed  Google Scholar 

  30. Honari, M., Askari, H., and Khosrowchahli, M., Use of desirability function method in optimization of regeneration and callus induction of Alhagi camelorum, Am. J. Plant Sci., 2014, vol. 5, no. 3, pp. 268–274. https://doi.org/10.4236/ajps.2014.53036

    Article  CAS  Google Scholar 

  31. Ashish, M., Jain, P., Lata, S., and Rani Sehrawat, A., Silver nanoparticles from embryogenic calli of Alhagi maurorum, Asian J. Pharm., 2018, vol. 12, no. 1, pp. 224–227. https://doi.org/10.22377/ajp.v12i01.2065

    Article  Google Scholar 

  32. Hassanein, A.M., Hormonal requirements induced different regeneration pathways in Alhagi graecorum, J. Plant Biotechnol., 2004, vol. 6, no. 3, pp. 171–179. www.koreascience.or.kr/article/JAKO200411923074207.pdf.

    Google Scholar 

  33. Dhaniya, S. and Parihar, S.K., In-vitro callus induction and multiplication of inter-nodal explants in plants Dicoma tomentosa and Alhagi maurorum, J. Drug Delivery Ther., 2019, vol. 9, no. 4A, pp. 212–219. https://doi.org/10.22270/jddt.v9i4-A.3455

    Article  CAS  Google Scholar 

  34. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  35. Gamborg, O.L., Miller, R.A., and Ojima, K., Nutrient requirements of suspension cultures of soybean root cells, Exp. Cell Res., 1968, vol. 50, pp. 151–158. https://doi.org/10.1016/0014-4827(68)90403-5

  36. Sidorov, R.A., Zhukov, A.V., Pchelkin, V.P., et al., Content and fatty acid composition of neutral acylglycerols in Euonymus fruits, J. Am. Oil Chem. Soc., 2014, vol. 91, no. 5, pp. 805–814. https://doi.org/10.1007/s11746-014-2425-2

    Article  CAS  Google Scholar 

  37. Bhogal, N.S., Bala, M., Kumar, Set., et al., Distribution of (n-9) and (n-7) isomers of monounsaturated fatty acids in Indian mustard (Brassica juncea), J. Am. Chem. Soc., 2013, vol. 91, no. 3, pp. 463–470. https://doi.org/10.1007/s11746-013-2387-9

    Article  CAS  Google Scholar 

  38. Lyons, L.M., Wheaton, T.A., and Pratt, H.K., Relations between the physical nature of mitochondrial membranes and chilling sensitivity in plants, Plant Physiol., 1964, vol. 39, no. 2, pp. 262–268. https://doi.org/10.1104/pp.39.2.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhukov, A.V. and Vereshchagin, A.G., Heptadecenoic acid as an internal standard in gas chromatographic determination of the weight of fatty acids, Zh. Anal. Khim., 1970, vol. 25, no. 11, pp. 2222–2227.

    Google Scholar 

  40. Nishanbaev, S.Z., Bobakulov, K.M., Nigmatullaev, A.M., et al., Volatile compounds from the aerial parts of four Alhagi species growing in Uzbekistan. Chem. Nat. Compd., 2016, vol. 52, no. 1, pp. 167–170. https://doi.org/10.1007/s10600-016-1582-y

    Article  CAS  Google Scholar 

  41. Abrankó, L., García-Reyes, J.F., and Molina-Diaz, A., In-source fragmentation and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-off light mass spectrometry, J. Mass Spectrom., 2011, vol. 46, no. 5, pp. 478–488. https://doi.org/10.1002/jms.1914

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, J., Xu, X.J., Xu, W., et al., Rapid characterization and identification of flavonoids in Radix astragali by ultra-high-pressure liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry, J. Chromatogr. Sci., 2015, vol. 53, no. 6, pp. 945–952. https://doi.org/10.1093/chromsci/bmu155

    Article  CAS  PubMed  Google Scholar 

  43. Lee, Y.H., Kim, B., Hwang, S.-R., et al., Rapid characterization of metabolites in soybean using ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) and screening for α-glucosidase inhibitory and antioxidant properties through different solvent systems, J. Food Drug Anal., 2018, vol. 26, no. 1, pp. 277–291.

    Article  CAS  Google Scholar 

  44. Zheng, Y., Duan, W., Sun, J., et al., Structural identification and conversion analysis of malonyl isoflavonoid glycosides in Astragali radix by HPLC coupled with ESI-Q TOF/MS, Molecules, 2019, vol. 24, no. 21, p. 3929. https://doi.org/10.3390/molecules24213929

    Article  CAS  PubMed Central  Google Scholar 

  45. Aguiar, C.L., Haddad, R., Eberlin, M.N., et al., Thermal behavior of malonylglucoside isoflavones in soybean flour analyzed by RPHPLC/DAD and electrospray ionization mass spectrometry, LWT-Food Sci. Technol., 2012, vol. 48, no. 1, pp. 114–119. https://doi.org/10.1016/j.lwt.2012.02.017

    Article  CAS  Google Scholar 

  46. Wink, M., Evolution of secondary metabolites in legumes (Fabaceae), S. Afr. J. Bot., 2013, vol. 89, pp. 164–175. https://doi.org/10.1016/j.sajb.2013.06.006

    Article  CAS  Google Scholar 

  47. Li, N., Zhang, G., Xiong, Y., et al., New isoflavonolignan with quinone reductase inducing activity from Alhagi pseudalhagi (M.B.), Fitoterapia, 2010, vol. 81, no. 8, pp. 1058–1061. https://doi.org/10.1016/j.fitote.2010.06.031

    Article  CAS  PubMed  Google Scholar 

  48. Guo, D., Xue, W.J., Zou, G.A., and Aisa, H.A., Chemical composition of Alhagi sparsifolia flowers, Chem. Nat. Compd., 2016, vol. 52, no. 6, pp. 1095–1097. https://doi.org/10.1007/s10600-016-1871-5

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

All biotechnological studies were carried out on the equipment of the Experimental Biotechnological Facility and the All-Russia Collection of Cell Cultures of Higher Plants of IРР RAS.

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR), contract no.18-54-06021 (Az_a), and the Government of the Russian Federation, Megagrant Project no. 075-15-2019-1882 (рhytochemical analysis of thе callus cultures).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Titova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: B5—Gamborg medium; BAP—6-benzylaminopurine; 2,4-D—2,4-dichlorophenoxyacetic acid; FAME—fatty acid methyl esters; FAs—fatty acids; GLC MS—capillary gas-liquid chromatography with mass spectrometric detection; MS—Murashige-Skoog medium; NAA—naphthaleneacetic acid; ODR and LDR—oleoyl- and linoleyl-desaturase ratio, respectively; SD—standard deviations; UI—unsaturation index; UPLC ESI-MS—ultraperformance liquid chromatography–electrospray ionization–mass spectrometry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, M.V., Kochkin, D.V., Sobolkova, G.I. et al. Obtainment and Characterization of Alhagi persarum Boiss. et Buhse Callus Cell Cultures that Produce Isoflavonoids. Appl Biochem Microbiol 57, 866–876 (2021). https://doi.org/10.1134/S000368382108007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382108007X

Keywords:

Profiles

  1. M. V. Titova