Skip to main content
Log in

Effective Transduction of Brain Neurons with Lentiviral Vectors Purified via Ion-Exchange Chromatography

  • BIOLOGICALS TECHNOLOGY
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The development of methods to purify viral vectors for gene therapy is one of the most important and urgent problems of modern biology and medicine. Drugs that carry cerebral neurotrophic factors have also recently become increasingly popular. However, viral drugs for gene therapy should meet certain requirements, including a high titer and applicability for in vivo studies. At the same time, the creation of such vectors requires cost-effective, inexpensive, and affordable methods for standard laboratories. This study compares various methods for the purification of lentiviral vectors encoding the brain-derived neurotrophic factor, BDNF. The highest titer (1.12 × 109/mL) was obtained via PEG 6000 precipitation followed by anion-exchange chromatography on two columns of sorbents containing quaternary ammonium groups. Abnormal aggregates of transduced neurons were detected after the injection into the brain of a newborn rat pup of lentiviruses that were purified only via PEG precipitation. This fact confirms the necessity of the proposed additional chromatographic purification stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Vigo, D., Thornicroft, G., and Atun, R., Estimating the true global burden of mental illness, Lancet Psychiat., 2016, vol. 3, no. 2, pp. 171–178. https://doi.org/10.1016/S2215-0366(15)00505-2

  2. Breland, J.Y., Frayne, S.M., Timko, C., et al., Mental health and obesity among veterans: a possible need for integrated care, Psychiatr. Serv., 2020, vol. 71, no. 5, pp. 506–509. https://doi.org/10.1176/appi.ps.201900078

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ursano, R.J., Herberman, MashH.B., Kessler, R.C., et al., Factors associated with suicide ideation in US army soldiers during deployment in Afghanistan, JAMA Netw. Open, 2020, vol. 3, no. 1. e1919935. https://doi.org/10.1001/jamanetworkopen.2019.19935

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andersen, L.S., Joska, J.A., Magidson, J.F., et al., Detecting depression in people living with HIV in South Africa: the factor structure and convergent validity of the South African Depression Scale (SADS), AIDS Behav., 2020, pp. 1–8. https://doi.org/10.1007/s10461-020-02787-4

  5. Amiri, A., Coppola, G., Scuderi, S., et al., Transcriptome and epigenome landscape of human cortical development modeled in organoids, Science, 2018, vol. 362, no. 6420, eaat6720. https://doi.org/10.1126/science.aat6720

  6. Polioudakis, D., de la Torre-Ubieta, L., Langerman, J., et al., A single-cell transcriptomic atlas of human neocortical development during mid-gestation, Neuron, 2019, vol. 103, no. 5, pp. 785–801. https://doi.org/10.1016/j.neuron.2019.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhong, S., Zhang, S., Fan, X., et al., A single-cell RNAseq survey of the developmental landscape of the human prefrontal cortex, Nature, 2018, vol. 555, no. 7697, pp. 524–528. https://doi.org/10.1038/nature25980

    Article  CAS  PubMed  Google Scholar 

  8. Lanshakov, D.A., Sukhareva, E.V., Kalinina, T.S., and Dygalo, N.N., Dexamethasone-induced acute excitotoxic cell death in the developing brain, Neurobiol. Dis., 2016, vol. 91, pp. 1–9. https://doi.org/10.1016/j.nbd.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  9. Menshanov, P.N., Lanshakov, D.A., and Dygalo, N.N., proBDNF is a major product of bdnf gene expressed in the perinatal rat cortex, Physiol. Res., 2015, vol. 64, no. 6, pp. 925–934. https://doi.org/10.33549/physiolres.932996

    Article  CAS  PubMed  Google Scholar 

  10. Domanskyi, A., Saarma, M., and Airavaara, M., Prospects of neurotrophic factors for Parkinson’s disease: comparison of protein and gene therapy, Hum. Gene Ther., 2015, vol. 26, no. 8, pp. 550–559. https://doi.org/10.1089/hum.2015.065

    Article  CAS  PubMed  Google Scholar 

  11. Palfi, S., Gurruchaga, J.M., Lepetit, H., et al., Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease, Hum. Gene Ther. Clin. Dev., 2018, vol. 29, no. 3, pp. 148–155. https://doi.org/10.1089/humc.2018.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang, H., Kuhen, K.L., and Wong-Staal, F., Lentivirus replication and regulation, Annu. Rev. Genet., 1999, vol. 33, no. 1, pp. 133–170. https://doi.org/10.1146/annurev.genet.33.1.133

    Article  CAS  PubMed  Google Scholar 

  13. Cronin, J., Zhang, X.-Y., and Reiser, J., Altering the tropism of lentiviral vectors through pseudotyping, Curr. Gene Ther., 2005, vol. 5, no. 4, pp. 387–398. https://doi.org/10.2174/1566523054546224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joglekar, A.V. and Sandoval, S., Pseudotyped lentiviral vectors: one vector, many guises, Hum. Gene Ther. Methods, 2017, vol. 28, no. 6, pp. 291–301. https://doi.org/10.1089/hgtb.2017.084

    Article  CAS  PubMed  Google Scholar 

  15. Eleftheriadou, I., Dieringer, M., Poh, X.Y., et al., Selective transduction of astrocytic and neuronal CNS subpopulations by lentiviral vectors pseudotyped with Chikungunya virus envelope, Biomaterials, 2017, vol. 123, pp. 1–14. https://doi.org/10.1016/j.biomaterials.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  16. Kato, S., Sugawara, M., Kobayashi, K., et al., Enhancement of the transduction efficiency of a lentiviral vector for neuron-specific retrograde gene delivery through the point mutation of fusion glycoprotein type E, J. Neurosci. Methods, 2019, vol. 311, pp. 147–155. https://doi.org/10.1016/j.jneumeth.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, M., Keller, B., Makalou, N., and Sutton, R.E., Systematic determination of the packaging limit of lentiviral vectors, Hum. Gene Ther., 2001, vol. 12, no. 15, pp. 1893–1905. https://doi.org/10.1089/104303401753153947

    Article  CAS  PubMed  Google Scholar 

  18. Chamberlain, K., Riyad, J.M., and Weber, T., Expressing transgenes that exceed the packaging capacity of adenoassociated virus capsids, Hum. Gene Ther. Methods, 2016, vol. 27, no. 1, pp. 1–12. https://doi.org/10.1089/hgtb.2015.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalesnykas, G., Kokki, E., Alasaarela, L., et al., Comparative study of adeno-associated virus, adenovirus, baculovirus and lentivirus vectors for gene therapy of the eyes, Curr. Gene Ther., 2017, vol. 17, no. 3, pp. 235–247. https://doi.org/10.2174/1566523217666171003170348

    Article  CAS  PubMed  Google Scholar 

  20. Yizhar, O. and Adamantidis, A., Cell type-specific targeting strategies for optogenetics, in Optogenetics: A Roadmap. Neuromethods, Stroh, A., Ed., New York, NY: Humana Press, 2018, vol. 133, pp. 25–42. https://doi.org/10.1007/978-1-4939-7417-7_2

    Book  Google Scholar 

  21. Liu, B.H., Yang, Y., Paton, J.F.R., et al., GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain, Mol. Ther., 2006, vol. 14, no. 6, pp. 872–882. https://doi.org/10.1016/j.ymthe.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  22. Martianova, E., Aniol, V.A., Manolova, A.O., et al., Activation of microglia associated with lentiviral transduction: a semiautomated method of assessment, Acta Histochem., 2019, vol. 121, no. 3, pp. 368–375. https://doi.org/10.1016/j.acthis.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, C.-X., Wang, S.-M., Bai, Y.-H., et al., Lentiviral vectors and adeno-associated virus vectors: useful tools for gene transfer in pain research, Anat. Rec., 2018, vol. 301, no. 5, pp. 825–836. https://doi.org/10.1002/ar.23723

    Article  Google Scholar 

  24. Tuszynski, M.H., Thal, L., Pay, M., et al., A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease, Nat. Med., 2005, vol. 11, no. 5, pp. 551–555. https://doi.org/10.1038/nm1239

    Article  CAS  PubMed  Google Scholar 

  25. Thomsen, G.M., Avalos, P., Ma, A.A., et al., Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis, Stem Cells, 2018, vol. 36, no. 7, pp. 1122–1131. https://doi.org/10.1002/stem.2825

    Article  CAS  PubMed  Google Scholar 

  26. Song, X., Zhou, B., Cui, L., et al., Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress, Neurochem. Res., 2017, vol. 42, no. 4, pp. 1073–1083. https://doi.org/10.1007/s11064-016-2141-4

    Article  CAS  PubMed  Google Scholar 

  27. Hu, Y. and Russek, S.J., BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation, J. Neurochem., 2008, vol. 105, no. 1, pp. 1–17. https://doi.org/10.1111/j.1471-4159.2008.05237.x

    Article  CAS  PubMed  Google Scholar 

  28. Shishkina, G.T., Lanshakov, D.A., Bannova, A.V., et al., Doxycycline used for control of transgene expression has its own effects on behaviors and Bcl-xL in the rat hippocampus, Cell. Mol. Neurobiol., 2018, vol. 38, no. 1, pp. 281–288. https://doi.org/10.1007/s10571-017-0545-6

    Article  CAS  PubMed  Google Scholar 

  29. Lanshakov, D.A., Drozd, U.S., and Dygalo, N.N., Optogenetic stimulation increases level of antiapoptotic protein BclxL in neurons, Biochemistry (Moscow), 2017, vol. 82, no. 3, pp. 340–344. https://doi.org/10.1134/S0006297917030129

    Article  CAS  PubMed  Google Scholar 

  30. Segura, M.M., Kamen, A.A., and Garnier, A., Overview of current scalable methods for purification of viral vectors, Methods Mol. Biol., 2011, vol. 737, pp. 89–116. https://doi.org/10.1007/978-1-61779-095-9_4

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, W., Hua, R., Wei, M., et al., An optimized method for high-titer lentivirus preparations without ultracentrifugation, Sci. Rep., 2015, vol. 5, p. 13875. https://doi.org/10.1038/srep13875

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bandeira, V., Peixoto, C., Rodrigues, A.F., et al., Downstream processing of lentiviral v vectors: releasing bottlenecks, Hum. Gene Ther. Methods, 2012, vol. 23, no. 4, pp. 255–263. https://doi.org/10.1089/hgtb.2012.059

    Article  CAS  PubMed  Google Scholar 

  33. Merten, O.W., Hebben, M., and Bovolenta, C., Production of lentiviral vectors, Mol. Ther. Methods Clin. Dev., 2016, vol. 3, p. 16017. https://doi.org/10.1038/mtm.2016.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruscic, J., Perry, C., Mukhopadhyay, T., et al., Lentiviral vector purification using nanofiber ion-exchange chromatography, Mol. Ther. Methods Clin. Dev., 2019, vol. 15, pp. 52–62. https://doi.org/10.1016/j.omtm.2019.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kutner, R.H., Zhang, X.-Y., and Reiser, J., Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors, Nat. Protoc., 2009, vol. 4, no. 4, pp. 495–505. https://doi.org/10.1038/nprot.2009.22

    Article  CAS  PubMed  Google Scholar 

  36. Khazipov, R., Zaynutdinova, D., Ogievetsky, E., et al., Atlas of the postnatal rat brain in stereotaxic coordinates, Front. Neuroanat., 2015, vol. 9, p. 161. https://doi.org/10.3389/fnana.2015.00161

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bannova, A.V., Menshanov, P.N., and Dygalo, N.N., The effect of lithium chloride on the levels of brain-derived neurotrophic factor in the neonatal brain, Neurochem. J., 2019, vol. 13, no. 4, pp. 344–348. https://doi.org/10.1134/s1819712419030048

    Article  CAS  Google Scholar 

  38. Ferlin, A., Raux, H., Baquero, E., et al., Characterization of pH-sensitive molecular switches that trigger the structural transition of vesicular stomatitis virus glycoprotein from the postfusion state toward the prefusion state, J. Virol., 2014, vol. 88, no. 22, pp. 13396–13409. https://doi.org/10.1128/jvi.01962-14

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abeyratne-Perera, H.K., Ogharandukun, E., and Chandran, P.L., Complex-type N-glycans on VSV-G pseudotyped HIV exhibit “tough” sialic and “brittle” mannose selfadhesions, Soft Matter, 2019, vol. 15, no. 22, pp. 4525–4540. https://doi.org/10.1039/c9sm00579j

    Article  CAS  PubMed  Google Scholar 

  40. Segura, M.M., Garnier, A., Di Falco, M.R., et al., Identification of host proteins associated with retroviral vector particles by proteomic analysis of highly purified vector preparations, J. Virol., 2008, vol. 82, no. 3, pp. 1107–1117. https://doi.org/10.1128/jvi.01909-07

    Article  CAS  PubMed  Google Scholar 

  41. Carneiro, F.A., Stauffer, F., Lima, C.S., et al., Membrane fusion induced by vesicular stomatitis virus depends on histidine protonation, J. Biol. Chem., 2003, vol. 278, no. 16, pp. 13789–13794. https://doi.org/10.1074/jbc.M210615200

    Article  CAS  PubMed  Google Scholar 

  42. Davis, H.E., Rosinski, M., Morgan, J.R., and Yarmush, M.L., Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation, Biophys. J., 2004, vol. 86, no. 2, pp. 1234–1242. https://doi.org/10.1074/jbc.M210615200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tinch, S., Szczur, K., Swaney, W., et al., A scalable lentiviral vector production and purification method using mustang Q chromatography and tangential flow filtration, Methods Mol. Biol., 2019, vol. 1937, pp. 135–153. https://doi.org/10.1007/978-1-4939-9065-8_8

    Article  CAS  PubMed  Google Scholar 

  44. Schweizer, M. and Merten, O.-W., Large-scale production means for the manufacturing of lentiviral vectors, Curr. Gene Ther., 2010, vol. 10, no. 6, pp. 474–486. https://doi.org/10.2174/156652310793797748

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by budgetary funding project no. 0259-2019-0003-C-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Lanshakov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All manipulations with animals in this work were carried out in consent with the International European Standards on Bioethics (86/609-EEC), the Russian Rules for Working with Laboratory Animals (no. 267 June 19, 2003), and the Permission of the Bioethics Committee of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: BDNF—brain-derived neurotrophic factor; CNS—central nervous system; dNTP—deoxyribonucleotide triphosphate; DTT—dithiotreitol; PBS—phosphate-buffered saline; PEG—polyethylene glycol; PFC—prefrontal cortex; PCR—polymerase chain reaction; qPCR—real-time PCR; RT-PCR—reverse-transcription PCR; TBS—Tris-buffered saline; v.p.—virus particles; VSV-G—protein G of the vesicular stomatitis virus; WPRE—WHP posttranscriptional response element.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaburova, E.V., Lanshakov, D.A. Effective Transduction of Brain Neurons with Lentiviral Vectors Purified via Ion-Exchange Chromatography. Appl Biochem Microbiol 57, 890–898 (2021). https://doi.org/10.1134/S0003683821080044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821080044

Keywords: