Woo, P.C., Huang, Y., Lau, S.K., and Yuen, K.Y., Coronavirus genomics and bioinformatics analysis, Viruses, 2010, vol. 2, no. 8, pp. 1804–1820. https://doi.org/10.3390/v2081803
CAS
Article
PubMed
PubMed Central
Google Scholar
Lu, R., Zhao, X., Li, J., et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet, 2020, vol. 395, no. 10224, pp. 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou, P., Yang, X.L., Wang, X.G., et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 2020, vol. 579, no. 7798, pp. 270–273. https://doi.org/10.1038/s41586-020-2012-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu, A., Peng, Y., Huang, B., et al., Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China, Cell Host Microbe, 2020, vol. 27, no. 3, pp. 325–328. https://doi.org/10.1016/j.chom.2020.02.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Wurm, T., Chen, H., Hodgson, T., et al., Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division, J. Virol., 2001, vol. 75, no. 19, pp. 9345–9356.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gussow, A.B., Auslander, N., Faure, G., et al., Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 26, pp. 15193–15199. https://doi.org/10.1073/pnas.2008176117
CAS
Article
PubMed
PubMed Central
Google Scholar
Heidary, F. and Gharebaghi, R., Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, J. Antibiot. (Tokyo), 2020, vol. 73, no. 9, pp. 593–602. https://doi.org/10.1038/s41429-020-0336-z
CAS
Article
Google Scholar
Caly, L., Druce, J.D., Catton, M.G., et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res., 2020, vol. 178, p. 104787. https://doi.org/10.1016/j.antiviral.2020.104787
CAS
Article
PubMed
PubMed Central
Google Scholar
Lehrer, S. and Rheinstein, P.H., Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2, In Vivo, 2020, vol. 34, no. 5, pp. 3023–3026. https://doi.org/10.21873/invivo.12134
CAS
Article
PubMed
PubMed Central
Google Scholar
Letko, M., Marzi, A., and Munster, V., Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat. Microbiol., 2020, vol. 5, no. 4, pp. 562–569. https://doi.org/10.1038/s41564-020-0688-y
CAS
Article
PubMed
Google Scholar
Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al., SARS-CoV-2 cell entry depends on ACE2 and TMP-RSS2 and is blocked by a clinically proven protease inhibitor, Cell, 2020, vol. 181, no. 2, pp. 271–280. e8. https://doi.org/10.1016/j.cell.2020.02.052
Shang, J., Wan, Y., Luo, C., et al., Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, no. 21, pp. 11727–11734. https://doi.org/10.1073/pnas.2003138117
CAS
Article
PubMed
PubMed Central
Google Scholar
Millet, J.K. and Whittaker, G.R., Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells, Virology, 2018, vol. 517, pp. 3–8. https://doi.org/10.1016/j.virol.2017.12.015
CAS
Article
PubMed
Google Scholar
Tang, T., Bidon, M., Jaimes, J.A., et al., Coronavirus membrane fusion mechanism offers a potential target for antiviral development, Antiviral Res., 2020, vol. 178, p. 104792. https://doi.org/10.1016/j.antiviral.2020.104792
CAS
Article
PubMed
PubMed Central
Google Scholar
Moisenovich, M., Tonevitsky, A., Maljuchenko, N., et al., Endosomal ricin transport: involvement of Rab4- and Rab5-positive compartments, Histochem. Cell Bio-l., 2004, vol. 121, no. 6, pp. 429–439. https://doi.org/10.1007/s00418-004-0652-6
CAS
Article
Google Scholar
Moisenovic, M., Tonevitsky, A., Agapov, I., et al., Differences in endocytosis and intracellular sorting of ricin and viscumin in 3T3 cells, Eur. J. Cell Biol., 2002, vol. 81, no. 10, pp. 529–538. https://doi.org/10.1078/0171-9335-00263
Article
PubMed
Google Scholar
Tonevitsky, A.G., Agapov, I.I., Shamshiev, A.T., et al., Immunotoxins containing A-chain of mistletoe lectin I are more active than immunotoxins with ricin A-chain, FEBS Lett., 1996, vol. 392, no. 2, pp. 166–168. https://doi.org/10.1016/0014-5793(96)00803-4
CAS
Article
PubMed
Google Scholar
Hamming, I., Timens, W., Bulthuis, M.L., et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol., 2004, vol. 203, no. 2, pp. 631–637. https://doi.org/10.1002/path.1570
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang, H., Li, H.B., Lyu, J.R., et al., Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection, Int. J. Infect. Dis., 2020, vol. 96, pp. 19–24. https://doi.org/10.1016/j.ijid.2020.04.027
CAS
Article
PubMed
PubMed Central
Google Scholar
Sungnak, W., Huang, N., Becavin, C., et al., SARSCoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes, Nat. Med., 2020, vol. 26, no. 5, pp. 681–687. https://doi.org/10.1038/s41591-020-0868-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu, H., Zhong, L., Deng, J., et al., High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa, Int. J. Oral Sci., 2020, vol. 12, no. 1, p. 8. https://doi.org/10.1038/s41368-020-0074-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Lukassen, S., Chua, R.L., Trefzer, T., et al., SARSCoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells, EMBO J., 2020, vol. 39, no. 10, p. e105114. https://doi.org/10.15252/embj.20105114
CAS
Article
PubMed
PubMed Central
Google Scholar
Baig, A.M., Khaleeq, A., Ali, U., and Syeda, H., Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms, ACS Chem. Neurosci., 2020, vol. 11, no. 7, pp. 995–998. https://doi.org/10.1021/acschemneuro.0c00122
CAS
Article
PubMed
Google Scholar
Notomi, T., Okayama, H., Masubuchi, H., et al., Loop-mediated isothermal amplification of DNA, Nucleic Acids Res., 2000, vol. 28, no. 12, p. E63. https://doi.org/10.1093/nar/28.12.e63
CAS
Article
PubMed
PubMed Central
Google Scholar
Nagamine, K., Hase, T., and Notomi, T., Accelerated reaction by loop-mediated isothermal amplification using loop primers, Mol. Cell. Probes, 2002, vol. 16, no. 3, pp. 223–229. https://doi.org/10.1006/mcpr.2002.0415
CAS
Article
PubMed
Google Scholar
Park, G.S., Ku, K., Baek, S.H., et al., Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), J. Mol. Diagn., 2020, vol. 22, no. 6, pp. 729–735. https://doi.org/10.1016/j.jmoldx.2020.03.006
CAS
Article
PubMed
Google Scholar
Makarova, Yu.A., Zotikov, A.A., Belyakova, G.A., et al., Isothermal loop amplification: an effective method of express diagnostics in oncology. Onkourologiya, 2018, vol. 14, no. 2, pp. 88–99. https://doi.org/10.17650/1726-9776-2018-14-2-88-99
Article
Google Scholar
Wang, D.G., Brewster, J.D., Paul, M., and Tomasula, P.M., Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification, Molecules, 2015, vol. 20, no. 4, pp. 6048–6059. https://doi.org/10.3390/molecules20046048
CAS
Article
PubMed
PubMed Central
Google Scholar
Wong, Y.P., Othman, S., Lau, Y.L., et al., Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms, J. Appl. Microbiol., 2018, vol. 124, no. 3, pp. 626–643. https://doi.org/10.1111/jam.13647
CAS
Article
PubMed
Google Scholar
Tsujimoto, M., Nakabayashi, K., Yoshidome, K., et al., One-step nucleic acid amplification for intraoperative detection of lymph node metastasis in breast cancer patients, Clin. Cancer Res., 2007, vol. 13, no. 16, pp. 4807–4816. https://doi.org/10.1158/1078-0432.CCR-06-2512
CAS
Article
PubMed
Google Scholar
Shkurnikov, M.Yu., Zotikov, A.A., Belyakov, M.M., et al., The use of loop isothermal DNA amplification for the diagnosis of prostate cancer micrometastases in the lymph nodes, Onkourologiya, 2017, vol. 13, no. 2, pp. 63–66. https://doi.org/10.17650/1726-9776-2017-13-2-63-66
Article
Google Scholar
Ganguli, A., Mostafa, A., Berger, J., et al., Rapid isothermal amplification and portable detection system for SARSCoV-2, Proc. Natl. Acad. Sci. U. S. A., 2020. https://doi.org/10.1073/pnas.2014739117
Lu, R., Wu, X., Wan, Z., et al., Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARSCoV-2, Virol. Sin., 2020, vol. 35, no. 3, pp. 344–347. https://doi.org/10.1007/s12250-020-00218-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Fomicheva, K.A. and Makarova, Yu.A., In vitro system for the LAMP detection of prostate cancer markers, Biotekhnologiya, 2020, vol. 36, no. 1, pp. 3–6. https://doi.org/10.21519/0234-2758-2020-36-1-3-6
Article
Google Scholar
Mori, Y., Kitao, M., Tomita, N., and Notomi, T., Real-time turbidimetry of LAMP reaction for quantifying template DNA, J. Biochem. Biophys. Methods, 2004, vol. 59, no. 2, pp. 145–157. https://doi.org/10.1016/j.jbbm.2003.12.005
CAS
Article
PubMed
Google Scholar
Mori, Y., Nagamine, K., Tomita, N., and Notomi, T., Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation, Biochem. Biophys. Res. Commun., 2001, vol. 289, no. 1, pp. 150–154. https://doi.org/10.1006/bbrc.2001.5921
CAS
Article
PubMed
Google Scholar
Tanner, N.A., Zhang, Y., and Evans, T.C., Jr., Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes, Biotechniques, 2015, vol. 58, no. 2, pp. 59–68.
CAS
Article
PubMed
Google Scholar
Wastling, S.L., Picozzi, K., Kakembo, A.S., and Welburn, S.C., LAMP for human African trypanosomiasis: a comparative study of detection formats, PLoS Negl. Trop. Dis., 2010, vol. 4, no. 11, p. e865. https://doi.org/10.1371/journal.pntd.0000865
CAS
Article
PubMed
PubMed Central
Google Scholar
Karthik, K., Rathore, R., Thomas, P., et al., New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination, MethodsX, 2014, vol. 1, pp. 137–143. https://doi.org/10.1016/j.mex.2014.08.009
CAS
Article
PubMed
PubMed Central
Google Scholar
James, A.S. and Alawneh, J.I., COVID-19 infection diagnosis: potential impact of isothermal amplification technology to reduce community transmission of SARS-CoV-2, Diagnostics (Basel), 2020, vol. 10, no. 6. https://doi.org/10.3390/diagnostics10060399
Augustine, R., Hasan, A., Das, S., et al., Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic, Biology (Basel), 2020, vol. 9, no. 8. https://doi.org/10.3390/biology9080182
Hayashida, K., Kajino, K., Hachaambwa, L., et al., Direct blood dry LAMP: a rapid, stable, and easy diagnostic tool for Human African trypanosomiasis, PLoS Negl. Trop. Dis., vol. 9, no. 3. e0003578. https://doi.org/10.1371/journal.pntd.0003578
Dao, ThiV.L., Herbst, K., Boerner, K., et al., A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples, Sci. Transl. Med., 2020, vol. 12, no. 556. https://doi.org/10.1126/scitranslmed.abc7075
Baek, Y.H., Um, J., Antigua, K.J.C., et al., Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2, Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 998–1007. https://doi.org/10.1080/22221751.2020.1756698
CAS
Article
PubMed
PubMed Central
Google Scholar
Chisala, P., et al., The sensitivity and specificity of loop-mediated isothermal amplification (LAMP) assay for tuberculosis diagnosis in adults with chronic cough in Malawi, PLoS One, 2016, vol. 11, no. 5. e0155101. https://doi.org/10.1371/journal.pone.0155101
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu, H., Li, X.T., Hu, B., et al., Development of reverse transcription loop-mediated isothermal amplification for rapid detection of Batai virus in cattle and mosquitoes, Vector Borne Zoonotic Dis., 2016, vol. 16, no. 6, pp. 415–422. https://doi.org/10.1089/vbz.2015.1882
Article
PubMed
Google Scholar
Dittrich, S., Castonguay-Vanier, J., Moore, C.E., et al., Loop-mediated isothermal amplification for Rickettsia typhi (the causal agent of murine typhus): problems with diagnosis at the limit of detection, J. Clin. Microbiol., 2014, vol. 52, no. 3, pp. 832–838. https://doi.org/10.1128/JCM.02786-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Yan, C., Cui, J., Huang, L., et al., Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay, Clin. Microbiol. Infect., 2020, vol. 26, no. 6, pp. 773–779. https://doi.org/10.1016/j.cmi.2020.04.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Bustin, S.A., Benes, V., Garson, J.A., et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 2009, vol. 55, no. 4, pp. 611–622. https://doi.org/10.1373/clinchem.2008.112797
CAS
Article
PubMed
Google Scholar
Yu, L., Wu, S., Hao, X., et al., Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform, Clin. Chem., 2020, vol. 66, no. 7, pp. 975–977. https://doi.org/10.1093/clinchem/hvaa102
Article
PubMed
Google Scholar