Skip to main content

Advertisement

Log in

Efficiency of Transient Expression in Protoplasts of Various Potato Cultivars

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The production of mesophilic protoplasts of potato (Solanum tuberosum L.) for transient gene expression is a required technological stage in the testing of the efficiency of the new genetic constructs, including CRISPR/Cas genome editing. In this study, the leaves of potato plants of nine Russian cultivars were used to isolate protoplasts. These plants were cultivated in vitro for 6–7 weeks in vessels with foil caps to prevent gas exchange with the environment. We demonstrated for the first time that 2.4 × 106 to 4.6 × 106 viable protoplasts can be obtained from 1 g of aseptic plant leaves depending on the used potato cultivar. We found that the level of protoplast transfection with the pHBT-sGFP-NosT genetic construct ranged from 10 to 49% depending on the cultivar, which is sufficient for a successful subsequent analysis of the efficiency of genetic constructs and editing of the potato genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Huber, S.C., Grand challenges in plant physiology: the underpinning of translational research, Front. Plant Sci., 2011, vol. 2, p. 48. https://doi.org/10.3389/fpls.2011.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cabello, J.V., Lodeyro, A.F., and Zurbriggen, M.D., Novel perspectives for the engineering of abiotic stress tolerance in plants, Curr. Opin. Biotechnol., 2014, vol. 26, pp. 62–70. https://doi.org/10.1016/j.copbio.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  3. Piquerez, S.J., Harvey, S.E., Beynon, J.L., and Ntoukakis, V., Improving crop disease resistance: lessons from research on Arabidopsis and tomato, Front. Plant Sci., 2014, vol. 5, p. 671. https://doi.org/10.3389/fpls.2014.00671

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andersson, M., Turesson, H., Nicolia, A., et al., Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts, Plant Cell Rep., 2017, vol. 36, no. 1, pp. 117–128. https://doi.org/10.1007/s00299-016-2062-3

    Article  CAS  PubMed  Google Scholar 

  5. Kubis, A. and Bar-Even, A., Synthetic biology approaches for improving photosynthesis, J. Exp. Bot., 2019, vol. 70, no. 5, pp. 1425–1433. https://doi.org/10.1093/jxb/erz029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Paoli, H.C., Tuskan, G.A., and Yang, X., An innovative platform for quick and flexible joining of assorted DNA fragments, Sci. Rep., 2016, vol. 6, p. 19278. https://doi.org/10.1038/srep19278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibson, D.G., Young, L., Chuang, R.Y., et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 2009, vol. 6, no. 5, pp. 343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  8. Patron, N.J., Orzaez, D., Marillonnet, S., et al., Standards for plant synthetic biology: a common syntax for exchange of DNA parts, New Phytol., 2015, vol. 208, no. 1, pp. 13–19. https://doi.org/10.1111/nph.13532

    Article  CAS  PubMed  Google Scholar 

  9. Pollak, B., Cerda, A., Delmans, M., et al., Loop assembly: a simple and open system for recursive fabrication of DNA circuits, New Phytol., 2019, vol. 222, no. 1, pp. 628–640. https://doi.org/10.1111/nph.15625

    Article  CAS  PubMed  Google Scholar 

  10. Vetchinkina, E.M., Komakhina, V.V., Vysotskii, D.A., et al., Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens, Russ. J. Genet., 2016, vol. 52, pp. 939–951. https://doi.org/10.1134/S1022795416080147

    Article  CAS  Google Scholar 

  11. Altpeter, F., Springer, N.M., Bartley, L.E., et al., Advancing crop transformation in the era of genome editing, Plant Cell, 2016, vol. 28, no. 7, pp. 1510–1520. https://doi.org/10.1105/tpc.16.00196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Page, M.T., Parry, M.A.J., and Carmo-Silva, E., A high-throughput transient expression system for rice, Plant, Cell Environ., 2019, vol. 42, no. 7, pp. 2057–2064. https://doi.org/10.1111/pce.13542

    Article  CAS  Google Scholar 

  13. Sainsbury, F. and Lomonossoff, G.P., Transient expressions of synthetic biology in plants, Curr. Opin. Plant Biol., 2014, vol. 19, pp. 1–7. https://doi.org/10.1016/j.pbi.2014.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andrieu, A., Breitler, J.C., Sire, C., et al., An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves, Rice, 2012, vol. 5, no. 1, p. 23. https://doi.org/10.1186/1939-8433-5-23

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bhaskar, P.B., Venkateshwaran, M., Wu, L., et al., Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato, PLoS One, 2009, vol. 4, no. 6, pp. 1–8. e5812. https://doi.org/10.1371/journal.pone.0005812

  16. Panwar, V., McCallum, B., and Bakkeren, G., Endogenous silencing of Puccinia triticina pathogenicity genes through in planta-expressed sequences leads to the suppression of rust diseases on wheat, Plant J., 2013, vol. 73, no. 3, pp. 521–532. https://doi.org/10.1111/tpj.12047

    Article  CAS  PubMed  Google Scholar 

  17. Madzharova, N.V., Kazakova, K.A., Strel’nikova, S.R., et al., Promoters pro-SmAMP1 and pro-SmAMP2 from wild plant Stellaria media for the biotechnology of dicotyledons, Russ. J. Plant Physiol., 2018, vol. 65, pp. 750–761.

    Article  CAS  Google Scholar 

  18. Kirienko, D.R., Luo, A., and Sylvester, A.W., Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study, Plant Physiol., 2012, vol. 159, no. 4, pp. 1309–1318. https://doi.org/10.1104/pp.112.199737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ueki, S., Magori, S., Lacroix, B., and Citovsky, V., Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery, Methods Mol. Biol., 2013, vol. 940, pp. 17–26. https://doi.org/10.1007/978-1-62703-110-3_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hameed, A., Zaidi, S.S., Shakir, S., and Mansoor, S., Applications of new breeding technologies for potato improvement, Front. Plant Sci., 2018, vol. 9, p. 925. https://doi.org/10.3389/fpls.2018.00925

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nadakuduti, S.S., Starker, C.G., Ko, D.K., et al., Evaluation of methods to assess in vivo activity of engineered genome-editing nucleases in protoplasts, Front. Plant Sci., 2019, vol. 10, p. 110. https://doi.org/10.3389/fpls.2019.00110

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nicolia, A., Proux-Wera, E., Ahman, I., et al., Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts, J. Biotechnol., 2015, vol. 204, pp. 17–24. https://doi.org/10.1016/j.jbiotec.2015.03.021

    Article  CAS  PubMed  Google Scholar 

  23. Jinek, M., Chylinski, K., Fonfara, I., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 2012, vol. 337, no. 6096, pp. 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bortesi, L. and Fische, R., The CRISPR/Cas9 system for plant genome editing and beyond, Biotechnol. Adv., 2015, vol. 33, no. 1, pp. 41–52.

    Article  CAS  PubMed  Google Scholar 

  25. Clasen, B.M., Stoddard, T.J., Luo, S., et al., Improving cold storage and processing traits in potato through targeted gene knockout, Plant Biotechnol. J., 2016, vol. 14, no. 1, pp. 169–176. https://doi.org/10.1111/pbi.12370

    Article  CAS  PubMed  Google Scholar 

  26. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.

    Article  CAS  Google Scholar 

  27. Sidorov, V.A., Piven’, N.M., Gleba, Yu.Yu., and Sytnik, K.M., Somaticheskaya gibridizatsiya paslenovykh (Somatic Hybridization of Nightshades), Kiev: Naukova Dumka, 1985.

  28. Biotekhnologiya rastenii: kul’tura kletok (Plant Biotechnology: Cell Culture), Butenko, R.G., Ed., Moscow: Agropromizdat, 1989, pp. 61–62.

    Google Scholar 

  29. Larkin, P.J., Purification and viability determinations of plant protoplasts, Planta, 1976, vol. 128, pp. 213–216. https://doi.org/10.1007/BF00393231

    Article  CAS  PubMed  Google Scholar 

  30. Chiu, W., Niwa, Y., Zeng, W., et al., Engineered GFP as a vital reporter in plants, Curr. Biol., 1996, vol. 6, no. 3, pp. 325–330. https://doi.org/10.1016/s0960-9822(02)00483-9

    Article  CAS  PubMed  Google Scholar 

  31. Yoo, S.D., Cho, Y.H., and Sheen, J., Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis, Nat. Protocols, 2007, vol. 2, no. 7, pp. 1565–1573. https://doi.org/10.1038/nprot.2007.199

    Article  CAS  PubMed  Google Scholar 

  32. Sheen, J., Signal transduction in maize and Arabidopsis mesophyll protoplasts, Plant Physiol., 2001, vol. 127, pp. 1466–1475. https://doi.org/10.1104/pp.010820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fischer, R. and Hain, R., Tobacco protoplast transformation and use for functional analysis of newly isolated genes and gene constructs, Methods Cell Biol., 1995, vol. 50, pp. 401–410. https://doi.org/10.1016/s0091-679x(08)61046-8

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen, V.C., Clelland, B.W., Hockman, D.J., et al., Replication stress checkpoint signaling controls tRNA gene transcription, Nat. Struct. Mol. Biol., 2010, vol. 17, no. 8, pp. 976–981. https://doi.org/10.1038/nsmb.1857

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y., Su, J., Duan, S., et al., A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes, Plant Methods, 2011, vol. 7, no. 1, p. 30. https://doi.org/10.1186/1746-4811-7-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones, H., Ooms, G., and Jones, M.G., Transient gene expression in electroporated Solanum protoplasts, Plant Mol. Biol., 1989, vol. 13, pp. 503–511. https://doi.org/10.1007/BF00027310

    Article  CAS  PubMed  Google Scholar 

  37. Anjum, M.A., Effect of protoplast source and media on growth and regenerability of protoplast-derived calluses of Solanum tuberosum L., Acta Physiol. Plant., 1998, vol. 20, no. 2, pp. 129–133.

    Article  CAS  Google Scholar 

  38. Sharma, S., Sarkar, D., Pandey, S.K., et al., Stoloniferous shoot protoplast, an efficient cell system in potato for somatic cell genetic manipulations, Sci. Hortic., 2011, vol. 128, pp. 84–91. https://doi.org/10.1016/j.scienta.2011.01.007

    Article  CAS  Google Scholar 

  39. Craig, W., Gargano, D., Scotti, N., et al., Direct gene transfer in potato: a comparison of particle bombardment of leaf explants and PEG-mediated transformation of protoplasts, Plant Cell Rep., 2005, vol. 24, no. 10, pp. 603–611. https://doi.org/10.1007/s00299-005-0018-0

    Article  CAS  PubMed  Google Scholar 

  40. Leucci, M.R., Di Sansebastiano, G., Gigante, M., et al., Secretion marker proteins and cell-wall polysaccharides move through different secretory pathways, Planta, 2007, vol. 225, pp. 1001–1017. https://doi.org/10.1007/s00425-006-0407-9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support was provided by the Comprehensive Research Program “Development of Potato Breeding and Seed Production.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Konovalova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: FDA—fluorescein diacetate; PEG—polyethylene glycol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalova, L.N., Strelnikova, S.R., Zlobin, N.E. et al. Efficiency of Transient Expression in Protoplasts of Various Potato Cultivars. Appl Biochem Microbiol 57, 800–807 (2021). https://doi.org/10.1134/S0003683821070048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821070048

Keywords: