Skip to main content
Log in

Activity of Methanogenic Archaea during the Composting of Organic Waste

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The composting of a mixture of excess sludge from biological treatment facilities for wastewater from dairy production and vegetable and wood waste in a ratio of 3 : 3 : 4 (by volume) with a high amount of dry substance (27.5%) at extremely high temperatures (75–82°C) made it possible to isolate active mesophilic and thermophilic methanogenic consortia. The dynamics of methane formation upon the liquid-phase fermentation of the studied mixture was studied. Accelerated methanogenesis and the highest methane yield (31.7 ± 2.9 mM L–1) were observed with culturing at 55°C. Analysis of the volatile fatty-acid production with liquid-phase fermentation showed that their content was low (<10 mM L–1). This amount could not inhibit methanogenesis, regardless of the applied substrates and temperature conditions. The 16S rRNA sequencing of the obtained consortia showed the presence of methanogenic archaea Methanosarcina thermophila, Methanothermobacter thermoautotrophicus, Candidatus ‘Methanogranum caenicola’, and Methanofollis ethanolicus. The consortia also included archaea that represent putative new taxa that are phylogenetically close to Candidatus ‘Methanoplasma termitum’ and Methanomassiliicoccus luminyensis. Of the mentioned methanogenic archaea, the latter four were found in composting organic waste for the first time. The obtained consortia can conduct active methanogenesis and can be applied as an inoculum in the anaerobic treatment of organic wastes, including composting wastes, in order to intensify and increase the biogas yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mironov, V., Bochkova, E., Gannesen, A., Vanteeva, A., Russkova, Yu., and Nozhevnikova, A., Microbiology (Moscow), 2020, vol. 89, no. 4, pp. 470–482.

    Article  CAS  Google Scholar 

  2. Xu, Q., Jin, X., Ma, Z., Tao, H., and Ko, Jae Hac., Biores. Technol., 2014, vol. 168, pp. 92–96.

    Article  CAS  Google Scholar 

  3. Di Maria, F., Micale, C., Sisani, L., and Rotondi, L., Waste Manage., 2016, vol. 55, pp. 49–60.

    Article  CAS  Google Scholar 

  4. Krusir, G., Tsykalo, A., Shpyrкo, T., and Leuenberger, H., J. Food Sci. Technol., 2018, vol. 11, no. 4, pp. 43–49.

    Google Scholar 

  5. Onwosi, C.O., Igbokwe, V.C., Odimba, J.N., Eke, I.E., Nwankwoala, M.O., Iroh, I.N., and Ezeogu, L.I., J. Environ. Manage., 2017, vol. 190, pp. 140–157.

    CAS  PubMed  Google Scholar 

  6. Conrad, R., Pedosphere, 2020, vol. 30, no. 1, pp. 25–39.

  7. Nozhevnikova, A., Mironov, V., Bochkova, E., Litti, Yu., and Russkova, Yu., Appl. Biochem. Microbiol., 2019, vol. 55, no. 3, pp. 199–208.

    Article  CAS  Google Scholar 

  8. Yang, F., Li, G., Shi, H., and Wang, Y., Waste Manage., 2015, vol. 36, pp. 70–76.

    Article  CAS  Google Scholar 

  9. Chen, R., Wang, Y., Wei, S., Wang, W., and Lin, X., FEMS Microbiol. Ecol., 2014, vol. 90, no. 3, pp. 575–586.

    Article  CAS  PubMed  Google Scholar 

  10. Ge, J., Huang, G., Li, J., and Han, L., Waste Manage., 2018, vol. 78, pp. 135–143.

    Article  CAS  Google Scholar 

  11. Capson-Tojo, G., Trably, E., Rouez, M., Crest, M., Bernet, N., Steyer, J.P., Delgenes, J.P., and Escudie, R., Waste Manage., 2018, vol. 76, pp. 423–430.

    Article  CAS  Google Scholar 

  12. Thummes, K., Kampfer, P., and Jackel, U., Syst. Appl. Microbiol., 2007, vol. 30, no. 5, pp. 418–429.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, S., Li, L., Peng, X., and Song, L., Biores. Technol., 2021, vol. 320, p. 124359.

    Article  CAS  Google Scholar 

  14. Safika, S., Aditiawati, P., and Akhmaloka, A., J. Pure Appl. Microbiol., 2014, vol. 8, no. 4, pp. 2837–2844.

    CAS  Google Scholar 

  15. Parshina, S.N., Ermakova, A.V., and Shatilova, K.A., Microbiology (Moscow), 2011, vol. 80, no. 1, pp. 50–59.

    Article  CAS  Google Scholar 

  16. Pfennig, N., Zbl. Bakt. I. Abt. Orig. Suppl., 1965, vol. 1, pp. 179–189.

    Google Scholar 

  17. Pfenning, N. and Lippert, K.D., Arch. Microbiol., 1966, vol. 55, pp. 245–246.

    Google Scholar 

  18. Wolin, E.A., Wolin, M.J., and Wolfe, R.S., J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.

    Article  CAS  PubMed  Google Scholar 

  19. Boulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Gal’chenko, V.F., Microbiology (Moscow), 2002, vol. 71, no. 4, pp. 425–432.

    Article  CAS  Google Scholar 

  20. Kolganova, T.V., Kuznetsov, B.B., and Turova, T.P., Microbiology (Moscow), 2002, vol. 71, no. 2, pp. 243–246.

    Article  CAS  Google Scholar 

  21. Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 12, pp. 5463–5467.

  22. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L., BMC Bioinform., 2009, vol. 10, p. 421.

    Article  Google Scholar 

  23. Chen, M.L. and Tsen, H.Y., J. Appl. Microbiol., 2002, vol. 92, pp. P. 912–919.

  24. Gohl, D., Macean, A., Hauge, A., Becker, A., Walek, D., and Beckman, K., Protocol Exchange, 2016, p. 1038.

  25. Fadrosh, D., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R., and Ravel, J., Microbiome, 2014, vol. 2, no. 1, p. 6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S., Engstrand, L., and Andersson, A.F., Appl. Environ. Microbiol., 2017, vol. 80, pp. 5116–5123.

    Article  Google Scholar 

  27. Merkel’, A., Tarnovetskii, I., Podosokorskaya, O., and Toshchakov, S., Microbiology (Moscow), 2019, vol. 88, no. 6, pp. 655–664.

    Google Scholar 

  28. Strode, P. and Brokaw, A., Using Biointeractive Resources to Teach Mathematics and Statistics in Biology. P Strode Brokaw, 2015, p. 39.

    Google Scholar 

  29. Gu, J., Liu, R., Cheng, Y., Stanisavljevic, N., Li, L., Djatkov, D., Peng, X., and Wang, X., Biores. Technol., 2020, vol. 301. Art. 122765.

    Article  CAS  Google Scholar 

  30. Arras, W., Hussain, A., Hausler, R., and Guiot, S.R., Waste Manage., 2019, vol. 87, pp. 279–287.

    Article  CAS  Google Scholar 

  31. Basinas, P., Rusin, J., and Chamradova, K., Environ. Res., 2021, vol. 192. Art. 110202.

    Article  CAS  PubMed  Google Scholar 

  32. Nozhevnikova, A., Russkova, Yu., Litti, Yu., Parshina, S., Zhuravleva, E., and Nikitina, A., Microbiology (Moscow), 2020, vol. 89, no. 2, pp. 129–147.

    Article  CAS  Google Scholar 

  33. Wang, Y., Zhang, Y., Wang, J., and Meng, L., Biomass Bioenergy, 2009, vol. 33, no. 5, pp. 848–853.

    Article  CAS  Google Scholar 

  34. Dogan, T., Ince, O., Oz, N.A., and Ince, B.K., J. Environ. Sci. Health, vol. 40, no. 3, pp. 633–644.

  35. Demirel, B. and Yenigun, O., Environ. Technol., 2002, vol. 23, no. 10, pp. 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  36. Rughoonundun, H., Mohee, R., and Holtzapple, M.T., Biores. Technol., 2012, vol. 112, pp. 91–97.

    Article  CAS  Google Scholar 

  37. Iino, T., Tamaki, H., Tamazawa, S., Ueno, Y., Ohkuma, M., Suzuki, K., Igarashi, Y., and Haruta, S., Microbes Environ., 2013, vol. 28, no. 2, pp. 244–250.

  38. De La Cuesta-Zuluaga, J., Spector, T.D., Youngblut, N.D., and Ley, R.E., Msystems, 2021, vol. 9, no. 6 (1). https://doi.org/10.1128/mSystems.00261-19

  39. Lang, K., Schuldes, J., Klingl, A., Poehlein, A., Daniel, R., and Brunea, A., Appl. Environ. Microbiol., 2015, vol. 81, pp. 1338 –1352.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Imachi, H., Sakai, S., Nagai, H., Yamaguchi, T., and Takai, K., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 800–805.

    Article  CAS  PubMed  Google Scholar 

  41. Karabey, B., Daglioglu, S.T., Azbar, N., and Ozdemir, G., J. Environ. Sci. Health, vol. 54, no. 13, pp. 1348–1355.

  42. Yamamoto, N. and Nakai, Y., Adv. Environ. Microbiol., 2019, vol. 6, pp. 151–172.

    Article  Google Scholar 

  43. Kurade, M.B., Saha, S., Salama, E.S., Patil, S.M., Govindwar, S.P., and Jeon, B.H., Biores. Technol., 2019, vol. 272, pp. 351–359.

    Article  CAS  Google Scholar 

  44. Dridi, B., Fardeau, M.L., Ollivier, B., Raoult, D., and Drancourt, M., Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1902–1907.

  45. Touzel, J.-P., Macario, E., Nölling, J., De Vos, W., Zhilina, T., and Lysenko, A., Int. J. Syst. Bacteriol., 1992, vol. 42, pp. 408–411.

    Article  CAS  PubMed  Google Scholar 

  46. Lin, L., Yu, Z., and Li, Y., Biores. Technol., 2017, vol. 241, pp. 1027–1035.

    Article  CAS  Google Scholar 

  47. Liu, C., Mao, L., Zheng, X., Yuan, J., Hu, B., Cai, Y., Xie, H., Peng, X., and Ding, X., Microbiol. Open, 2019, vol. 8, no. 5. Art. e00715.

  48. Zellner, G., Stackebrandt, E., Messner, P., Tindall, B., Macario, E., Kneifel, H., Sleytr, U., and Winter, J., Arch. Microbiol., 1989, vol. 151, pp. 381–390.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, Y., Boone, D., Mah, R., Boone, J., and Xun, L., Int. J. Syst. Bacteriol., 1989, vol. 39, pp. 10–13.

    Article  Google Scholar 

  50. Zhao, Y., Jiang, B., Tang, X., and Liu, S., Sci. Total Environ., 2019, vol. 687, pp. 50–60.

    Article  CAS  PubMed  Google Scholar 

  51. Trego, A.C., Galvin, E., Sweeney, C., Dunning, S., Murphy, C., Mills, S., Nzeteu, C., Quince, C., Colleny, S., Ijaz, U., and Collins, G., Front. Microbiol., 2020, vol. 11, p. 1126.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sasaki, K., Morita, M., Sasaki, D., Nagaoka, J., Matsumoto, N., Ohmura, N., and Shinozaki, H., J. Biosci. Bioeng, 2011, vol. 112, no. 5, pp. 469–472.

    Article  CAS  PubMed  Google Scholar 

  53. Xu, Q., Liu, X., Wang, D., Liu, Y., Wang, Q., Ni, B.J., and Li, H., Biores. Technol., 2019, vol. 284, pp. 456–465.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out on the scientific equipment of the Bioengineering Core Facility (Biotechnology Research Center of the Russian Academy of Sciences).

Funding

This work was supported by the Russian Foundation for Basic Research, project no. mk-18-29-25035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mironov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, V.V., Potokina, V.V., Botchkova, E.A. et al. Activity of Methanogenic Archaea during the Composting of Organic Waste. Appl Biochem Microbiol 57, 750–759 (2021). https://doi.org/10.1134/S0003683821060107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821060107

Keywords:

Profiles

  1. V. V. Mironov