Abstract
The composting of a mixture of excess sludge from biological treatment facilities for wastewater from dairy production and vegetable and wood waste in a ratio of 3 : 3 : 4 (by volume) with a high amount of dry substance (27.5%) at extremely high temperatures (75–82°C) made it possible to isolate active mesophilic and thermophilic methanogenic consortia. The dynamics of methane formation upon the liquid-phase fermentation of the studied mixture was studied. Accelerated methanogenesis and the highest methane yield (31.7 ± 2.9 mM L–1) were observed with culturing at 55°C. Analysis of the volatile fatty-acid production with liquid-phase fermentation showed that their content was low (<10 mM L–1). This amount could not inhibit methanogenesis, regardless of the applied substrates and temperature conditions. The 16S rRNA sequencing of the obtained consortia showed the presence of methanogenic archaea Methanosarcina thermophila, Methanothermobacter thermoautotrophicus, Candidatus ‘Methanogranum caenicola’, and Methanofollis ethanolicus. The consortia also included archaea that represent putative new taxa that are phylogenetically close to Candidatus ‘Methanoplasma termitum’ and Methanomassiliicoccus luminyensis. Of the mentioned methanogenic archaea, the latter four were found in composting organic waste for the first time. The obtained consortia can conduct active methanogenesis and can be applied as an inoculum in the anaerobic treatment of organic wastes, including composting wastes, in order to intensify and increase the biogas yield.



Similar content being viewed by others
REFERENCES
Mironov, V., Bochkova, E., Gannesen, A., Vanteeva, A., Russkova, Yu., and Nozhevnikova, A., Microbiology (Moscow), 2020, vol. 89, no. 4, pp. 470–482.
Xu, Q., Jin, X., Ma, Z., Tao, H., and Ko, Jae Hac., Biores. Technol., 2014, vol. 168, pp. 92–96.
Di Maria, F., Micale, C., Sisani, L., and Rotondi, L., Waste Manage., 2016, vol. 55, pp. 49–60.
Krusir, G., Tsykalo, A., Shpyrкo, T., and Leuenberger, H., J. Food Sci. Technol., 2018, vol. 11, no. 4, pp. 43–49.
Onwosi, C.O., Igbokwe, V.C., Odimba, J.N., Eke, I.E., Nwankwoala, M.O., Iroh, I.N., and Ezeogu, L.I., J. Environ. Manage., 2017, vol. 190, pp. 140–157.
Conrad, R., Pedosphere, 2020, vol. 30, no. 1, pp. 25–39.
Nozhevnikova, A., Mironov, V., Bochkova, E., Litti, Yu., and Russkova, Yu., Appl. Biochem. Microbiol., 2019, vol. 55, no. 3, pp. 199–208.
Yang, F., Li, G., Shi, H., and Wang, Y., Waste Manage., 2015, vol. 36, pp. 70–76.
Chen, R., Wang, Y., Wei, S., Wang, W., and Lin, X., FEMS Microbiol. Ecol., 2014, vol. 90, no. 3, pp. 575–586.
Ge, J., Huang, G., Li, J., and Han, L., Waste Manage., 2018, vol. 78, pp. 135–143.
Capson-Tojo, G., Trably, E., Rouez, M., Crest, M., Bernet, N., Steyer, J.P., Delgenes, J.P., and Escudie, R., Waste Manage., 2018, vol. 76, pp. 423–430.
Thummes, K., Kampfer, P., and Jackel, U., Syst. Appl. Microbiol., 2007, vol. 30, no. 5, pp. 418–429.
Yang, S., Li, L., Peng, X., and Song, L., Biores. Technol., 2021, vol. 320, p. 124359.
Safika, S., Aditiawati, P., and Akhmaloka, A., J. Pure Appl. Microbiol., 2014, vol. 8, no. 4, pp. 2837–2844.
Parshina, S.N., Ermakova, A.V., and Shatilova, K.A., Microbiology (Moscow), 2011, vol. 80, no. 1, pp. 50–59.
Pfennig, N., Zbl. Bakt. I. Abt. Orig. Suppl., 1965, vol. 1, pp. 179–189.
Pfenning, N. and Lippert, K.D., Arch. Microbiol., 1966, vol. 55, pp. 245–246.
Wolin, E.A., Wolin, M.J., and Wolfe, R.S., J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.
Boulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Gal’chenko, V.F., Microbiology (Moscow), 2002, vol. 71, no. 4, pp. 425–432.
Kolganova, T.V., Kuznetsov, B.B., and Turova, T.P., Microbiology (Moscow), 2002, vol. 71, no. 2, pp. 243–246.
Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 12, pp. 5463–5467.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L., BMC Bioinform., 2009, vol. 10, p. 421.
Chen, M.L. and Tsen, H.Y., J. Appl. Microbiol., 2002, vol. 92, pp. P. 912–919.
Gohl, D., Macean, A., Hauge, A., Becker, A., Walek, D., and Beckman, K., Protocol Exchange, 2016, p. 1038.
Fadrosh, D., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R., and Ravel, J., Microbiome, 2014, vol. 2, no. 1, p. 6.
Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S., Engstrand, L., and Andersson, A.F., Appl. Environ. Microbiol., 2017, vol. 80, pp. 5116–5123.
Merkel’, A., Tarnovetskii, I., Podosokorskaya, O., and Toshchakov, S., Microbiology (Moscow), 2019, vol. 88, no. 6, pp. 655–664.
Strode, P. and Brokaw, A., Using Biointeractive Resources to Teach Mathematics and Statistics in Biology. P Strode Brokaw, 2015, p. 39.
Gu, J., Liu, R., Cheng, Y., Stanisavljevic, N., Li, L., Djatkov, D., Peng, X., and Wang, X., Biores. Technol., 2020, vol. 301. Art. 122765.
Arras, W., Hussain, A., Hausler, R., and Guiot, S.R., Waste Manage., 2019, vol. 87, pp. 279–287.
Basinas, P., Rusin, J., and Chamradova, K., Environ. Res., 2021, vol. 192. Art. 110202.
Nozhevnikova, A., Russkova, Yu., Litti, Yu., Parshina, S., Zhuravleva, E., and Nikitina, A., Microbiology (Moscow), 2020, vol. 89, no. 2, pp. 129–147.
Wang, Y., Zhang, Y., Wang, J., and Meng, L., Biomass Bioenergy, 2009, vol. 33, no. 5, pp. 848–853.
Dogan, T., Ince, O., Oz, N.A., and Ince, B.K., J. Environ. Sci. Health, vol. 40, no. 3, pp. 633–644.
Demirel, B. and Yenigun, O., Environ. Technol., 2002, vol. 23, no. 10, pp. 1179–1187.
Rughoonundun, H., Mohee, R., and Holtzapple, M.T., Biores. Technol., 2012, vol. 112, pp. 91–97.
Iino, T., Tamaki, H., Tamazawa, S., Ueno, Y., Ohkuma, M., Suzuki, K., Igarashi, Y., and Haruta, S., Microbes Environ., 2013, vol. 28, no. 2, pp. 244–250.
De La Cuesta-Zuluaga, J., Spector, T.D., Youngblut, N.D., and Ley, R.E., Msystems, 2021, vol. 9, no. 6 (1). https://doi.org/10.1128/mSystems.00261-19
Lang, K., Schuldes, J., Klingl, A., Poehlein, A., Daniel, R., and Brunea, A., Appl. Environ. Microbiol., 2015, vol. 81, pp. 1338 –1352.
Imachi, H., Sakai, S., Nagai, H., Yamaguchi, T., and Takai, K., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 800–805.
Karabey, B., Daglioglu, S.T., Azbar, N., and Ozdemir, G., J. Environ. Sci. Health, vol. 54, no. 13, pp. 1348–1355.
Yamamoto, N. and Nakai, Y., Adv. Environ. Microbiol., 2019, vol. 6, pp. 151–172.
Kurade, M.B., Saha, S., Salama, E.S., Patil, S.M., Govindwar, S.P., and Jeon, B.H., Biores. Technol., 2019, vol. 272, pp. 351–359.
Dridi, B., Fardeau, M.L., Ollivier, B., Raoult, D., and Drancourt, M., Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1902–1907.
Touzel, J.-P., Macario, E., Nölling, J., De Vos, W., Zhilina, T., and Lysenko, A., Int. J. Syst. Bacteriol., 1992, vol. 42, pp. 408–411.
Lin, L., Yu, Z., and Li, Y., Biores. Technol., 2017, vol. 241, pp. 1027–1035.
Liu, C., Mao, L., Zheng, X., Yuan, J., Hu, B., Cai, Y., Xie, H., Peng, X., and Ding, X., Microbiol. Open, 2019, vol. 8, no. 5. Art. e00715.
Zellner, G., Stackebrandt, E., Messner, P., Tindall, B., Macario, E., Kneifel, H., Sleytr, U., and Winter, J., Arch. Microbiol., 1989, vol. 151, pp. 381–390.
Zhao, Y., Boone, D., Mah, R., Boone, J., and Xun, L., Int. J. Syst. Bacteriol., 1989, vol. 39, pp. 10–13.
Zhao, Y., Jiang, B., Tang, X., and Liu, S., Sci. Total Environ., 2019, vol. 687, pp. 50–60.
Trego, A.C., Galvin, E., Sweeney, C., Dunning, S., Murphy, C., Mills, S., Nzeteu, C., Quince, C., Colleny, S., Ijaz, U., and Collins, G., Front. Microbiol., 2020, vol. 11, p. 1126.
Sasaki, K., Morita, M., Sasaki, D., Nagaoka, J., Matsumoto, N., Ohmura, N., and Shinozaki, H., J. Biosci. Bioeng, 2011, vol. 112, no. 5, pp. 469–472.
Xu, Q., Liu, X., Wang, D., Liu, Y., Wang, Q., Ni, B.J., and Li, H., Biores. Technol., 2019, vol. 284, pp. 456–465.
ACKNOWLEDGMENTS
The work was carried out on the scientific equipment of the Bioengineering Core Facility (Biotechnology Research Center of the Russian Academy of Sciences).
Funding
This work was supported by the Russian Foundation for Basic Research, project no. mk-18-29-25035.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.
Additional information
Translated by A. Bulaev
Rights and permissions
About this article
Cite this article
Mironov, V.V., Potokina, V.V., Botchkova, E.A. et al. Activity of Methanogenic Archaea during the Composting of Organic Waste. Appl Biochem Microbiol 57, 750–759 (2021). https://doi.org/10.1134/S0003683821060107
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0003683821060107


