Skip to main content

Advertisement

Log in

Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The enzyme complex produced by the strain B. thuringiensis B-387, which is characterized by high chitosanase production (>4.5 U mL–1), degraded the polymer to soluble, low molecular weight chitooligosaccharides (CHOs, Mw ≤ 2 kDa), along with a minor yield (~5%) of alkali-precipitated oligochitosans (Mw 2–16 kDa). The hydrolytic complexes produced by B. atrophaeus IB-33-1 and Cohnella sp. IB-P192, which mainly comprise chitinases (0.3–0.5 U mL–1), demonstrated the lowest rate and degree of chitosan (DD 85%) hydrolysis. The selection of an enzyme : substrate ratio in the range of 2–5 units/g (based on chitosanase) made it possible to reduce the hydrolysis depth of the initial polymer and to increase the yield of oligochitosans with a Mw of ~15–17 kDa to 30% for chitosan (DD 85%) depolymerization by the enzyme complex from B. thuringiensis B-387. The decrease in the bactericidal and fungicidal effect of the oligomers that formed during the destruction of chitosan with varying deacetylation degrees (DD 85% and 50%) by enzyme complexes displaying high chitosanase activity was, as a rule, more distinct than that achieved with the use of chitinases. However, in some cases, there were both nonspecific and specific enhancements of the antimicrobial action of hydrolytic products in comparison with the initial polymer, which was determined by individual sensitivity of bacterial and micromycetes strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Varlamov, V.P., Il’ina AV., Shagdarova B.Ts., Lun’kov A.P., Mysyakina I.S, Usp. Biol. Khim., 2020, vol. 60, pp. 317–368.

    Google Scholar 

  2. Hamed, I., Ozogul, F., and Regenstein, J.M., Trends Food Sci. Technol., 2016, vol. 48, pp. 40–50. https://doi.org/10.1016/j.tifs.2015.11.007

    Article  CAS  Google Scholar 

  3. Ghormade, M., Pathan, E.K., and Deshpande, M.V., Int. J. Biol. Macromol. B, 2017, vol. 104, pp. 1415–1421. https://doi.org/10.1016/j.ijbiomac.2017.01.112

    Article  CAS  Google Scholar 

  4. Kulikov, S.N., Tyurin, Yu.A., Fassakhov, R.S., and Varlamov, V.P., ZhMEI, 2009, no. 5, pp. 91–97.

  5. Yilmaz Atay, H.Y., Functional Chitosan, Jana, S. and Subrata, J., Eds., Syngapore: Springer Nature, 2019, pp. 457–489. https://doi.org/10.1007/978-981-15-0263-7_15

  6. Gerasimenko, D.V., Avdienko, I.D., Bannikova, G.E., Zueva, O.Yu., and Varlamov, V.P., Appl. Biochem. Microbiol., 2004, vol. 40, no. 3, pp. 253–257.

    Article  CAS  Google Scholar 

  7. Hosseinejad, M. and Jafari, S.M., Int. J. Biol. Macromol., 2016, vol. 85, pp. 467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022

    Article  CAS  Google Scholar 

  8. Ilyina, A.V., Tikhonov, V.E., Albulov, A.I., and Varlamov, V.P., Process Biochem., 2000, vol. 35, no. 6, pp. 563–568. https://doi.org/10.1016/S0032-9592(99)00104-1

    Article  CAS  Google Scholar 

  9. Liaqat, F. and Eltem, R., Carbohydr. Res., 2018, vol. 184, no. 15, pp. 243–259. https://doi.org/10.1016/j.carbpol.2017.12.067

    Article  CAS  Google Scholar 

  10. Liang, S., Sun, Y., and Dai, X., Int. J. Mol. Sci., 2018, vol. 19, no. 8, pp. 1–19. https://doi.org/10.3390/ijms19082197

    Article  CAS  Google Scholar 

  11. Tokura, S., Ueno, K., Miyazaki, S., and Nishi, N., Macromol. Symp., vol. 120, no. 1, pp. 1–9. https://doi.org/10.1002/masy.19971200103

  12. Park, Y., Kim, M.H., Park, S.C., Cheong, H., Jang, M.K., Nah, J.W., and Hahm, K.S., J. Microbiol. Biotechnol., 2008, vol. 18, no. 10, pp. 1729–1734.

    CAS  PubMed  Google Scholar 

  13. Lin, S-B., Lin, Y-C., and Chen, H-H., Food Chem., 2009, vol. 116, no. 1, pp. 47–53. https://doi.org/10.1016/j.foodchem.2009.02.002

    Article  CAS  Google Scholar 

  14. Sánchez, Á., Mengíbar, M., Rivera-Rodríguez, G., Moerchbacher, B., Acosta, N., and Heras, A., Carbohydr. Res., 2017, vol. 157, pp. 251–257.

    Article  Google Scholar 

  15. Jung, W.-J. and Park, R.-D., Mar. Drugs, 2014, vol. 12, no. 11, pp. 5328–5356. https://doi.org/10.3390/md12115328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aam, B., Heggset, E., Norberg, A., Sǿrlie, M., Varum, K., and Ejsink, V., Mar. Drugs, 2010, vol. 8, no. 5, pp. 1482–1517. https://doi.org/10.3390/md8051482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aktuganov, G.E., Safina, V.R., Galimzyanova, N.F., Kuz’mina, L.Yu., Gil’vanova, E.A., Boiko, T.F., and Melent’ev, A.I., Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 716–724. https://doi.org/10.1134/S0026261718050028

    Article  CAS  Google Scholar 

  18. Aktuganov, G.E., Galimzyanova, N.F., Teregulova, G.A., and Melent’ev, A.I., Appl. Biochem. Microbiol., 2016, vol. 52, no. 5, pp. 531–536. https://doi.org/10.7868/S0555109916050020

    Article  CAS  Google Scholar 

  19. Sørlie, M., Horn, S.J., Vaaje-Kolstad, G., and Eijsink, V.G.H., React. Funct. Polym., 2020, vol. 148, p. 104488. https://doi.org/10.1016/j.reactfunctpolym.2020.104488

    Article  CAS  Google Scholar 

  20. Aktuganov, G.E., Galimzianova, N.F., Gilvanova, E.A., Pudova, E.A., Kuzmina, L.Yu., Melentiev, A.I., and Safina, V.R., J. Microbiol. Biotechnol., 2019, vol. 35, no. 2, pp. 1–13. https://doi.org/10.1007/s11274-019-2590-4

    Article  CAS  Google Scholar 

  21. Viens, P., Lacombe-Harvey, M.-E., and Brzezinski, R., Mar. Drugs, 2015, vol. 13, no. 11, pp. 6566–6587. https://doi.org/10.3390/md13116566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Il'ina, A.V., Varlamov, V.P., Melent’ev, A.I., and Aktuganov, G.E., Appl. Biochem. Microbiol., 2001, vol. 37, no. 2, pp. 142–144. https://doi.org/10.1023/A:1002867412442

    Article  CAS  Google Scholar 

  23. Pagnocelli, M.G.B., De Araujo, N.K., Da Silva, N.M.P., De Assis, C.F., Rodrigues, S., and De Macedo, G.R., Bras. Arch. Biol. Technol., 2010, vol. 53, no. 6, pp. 1461–1468. https://doi.org/10.1590/S1516-89132010000600023

    Article  CAS  Google Scholar 

  24. Hadwiger, L.A., Ogawa, T., and Kuyama, H., MPMI, 1994, vol. 7, no. 4, pp. 531–533. https://doi.org/10.1094/mpmi-7-0531

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Agidel Center for Collective Use of the Ufa Federal Research Center of the Russian Academy of Sciences was used in the present study.

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-34-90119, and the Ministry of Science and Higher Education of the Russian Federation, government task no. 075-00326-19-00 in the framework of the project no. AAAA-A18-118022190098-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Aktuganov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safina, V.R., Melentiev, A.I., Galimzianova, N.F. et al. Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers. Appl Biochem Microbiol 57, 626–635 (2021). https://doi.org/10.1134/S0003683821050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821050124

Keywords: