Skip to main content
Log in

The Topical Cream Produced from Phycocyanin of Spirulina platensis Accelerates Wound Healing in Mice Infected with Candida albicans

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Application of natural colors in food and medicine, due to toxic effects of synthetic colors has been considered recently. Phycocyanin is regarded as the most preferred phycobilin pigment of cyanobacteria Spirulina because it has medical and medicinal features. In current study, phycocyanin was extracted and purified from Spirulina platensis using 5 freezing/thawing cycles, ultrasonic disruption, ammonium sulphate precipitation and dialysis. Purified phycocyanin was tested by UV-spectrophotometrically and using FT-IR and HPLC methods. The antifungal effect of purified phycocyanin was evaluated versus Candida albicans on sabouraud dextrose agar plates, and maximum anticandidal activity was revealed in the range from 20 to 25 mg/mL of phycocyanin. Making sure of phycocyanin’s antifungal effect, the efficacy of its produced cream (using 1.5 and 3% of phycocyanin compared to control) was investigated on mice infected with C. albicans. Based on obtained results, those groups of mice treated by formulation containing phycocyanin improved much sooner than control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Romani, L. J. Leukocyte Biol., 2000, vol. 68, no. 2, pp. 175–179.

    CAS  PubMed  Google Scholar 

  2. Kullberg, B. and Oude, A.L. Eur. J. Med. Res., 2002, vol. 7, no. 5, pp. 183–191.

    CAS  PubMed  Google Scholar 

  3. Romani, L., Candida and Candidiasis, Washington, D.C.: Am. Society Microbiol., 2nd ed., 2012, pp. 127–136.

    Google Scholar 

  4. Grzanna, R., Polotsky, A., Phong, V., Phan, B.S., Pugh, N., Pasco, D., et al., J. Altern. Complement. Med., 2006, vol. 12, no. 5, pp. 429–435.

    Article  Google Scholar 

  5. Pugh, N., Ross, S.A., Elsohly, H.N., Elsohly, M.A., and Pasco, D.S., Plant Med., 2001, vol. 67, no. 8, pp. 737–742.

    Article  CAS  Google Scholar 

  6. Jensen, G.S., J. Am. Nutraceutical Assoc., 2001, vol. 3, pp. 24–30.

    Google Scholar 

  7. Leiro, J.M., Castro, R., Arranz, J.A., and Lamas, J., Int. Immunopharmocol., 2007, vol. 7, no. 7, pp. 879–888.

    Article  CAS  Google Scholar 

  8. Kaushik, P. and Chauhan, A. Ind. J. Microbiol., 2008, vol. 48, no. 3, pp. 348–352.

    Article  CAS  Google Scholar 

  9. Ozdemir, G., Karabay, N.U., Dalay, M.C., and Pazarbasi, B., Phytother. Res., 2004, vol. 18, no. 9, pp. 754–757.

    Article  CAS  Google Scholar 

  10. Akao, Y., Akazawa, T., Ebihara, T., Hazeki, K., Hazeki, O., Masuda, H., et al., Cancer Sci., 2009, vol. 100, no. 8, pp. 1494–1501.

    Article  CAS  Google Scholar 

  11. Yang, Y., Park, Y., Cassada, D.A., Snow, D.D., Rogers, D.G., and Lee, J., Food Chem. Toxic., 2011, vol. 49, no. 7.

  12. MacMillan, J.B., Ernest-Russel, M.A., de Ropp, J.S., and Molinski, T.F., J. Organic Chem., 2002, vol. 67, no.23, pp. 8210–8215.

    Article  CAS  Google Scholar 

  13. Hirahashi, T., Matsumoto, M., Hazeki, K., Saeki, Y., Ui, M., and Seya, T., Int. Immunopharmocol., 2002, vol. 2, no. 4, pp. 423–434.

    Article  CAS  Google Scholar 

  14. Subhashini, J., Mahipal, S.V.K., Reddy, M.C., Reddy, M.M., Rachamallu, A., and Reddanna, P., Biochem. Pharmacol., 2004, vol.68, no. 3, pp. 453–462.

    Article  CAS  Google Scholar 

  15. Gheda, S.F., Khalil, M.A., and Gheida, S.F., Afric. J. Biotech., 2013, vol. 12, no. 18.

  16. Su, H.N., Xie, B.B., Zhang, X.Y., Zhou, B.C. and Zhang, Y.Z., Photosynthesis Res., 2010, vol. 106, pp. 73–87.

    Article  CAS  Google Scholar 

  17. Gault, P.M., and Marler, H.J. Handbook on Cyanobacteria: Biochemistry, Biotechnology and Application, Gault, P.M. and Marler, H.J., Ed., New York: Nova Science Publishers, 2009.

    Google Scholar 

  18. Eriksen, N.T., Appl. Microb. Biotech., 2008, vol. 80, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  19. Patil, G., Chethana, S., Sridevi, A.S., and Raghavarao, K.S.M.S., J. Chromatogr., 2006, vol.1127, no. 1–2, pp. 76–81.

    Article  CAS  Google Scholar 

  20. Izadi, M. and Fazilati, M., Asian J.Green Chem., 2018, vol. 2, pp. 364–379.

    CAS  Google Scholar 

  21. Muthulakshmi, M., Saranya, A., Sudha, M., and Selvakumar, G., J. Algal Biomass Utilization, 2012, vol. 3, no. 3, pp. 7–11.

    Google Scholar 

  22. Mishra, P. and Prasad, S.M., Int. J. Pharm. Sci. Res., 2015, vol. 6, no. 3, pp. 1000–1007.

    Google Scholar 

  23. Ghosh, V., Saranya, S., Mukherjee, A., and Chandrasekaran, N., Colloids Surfaces B: Biointerfaces, 2013, vol. 105, pp.152–157.

    Article  CAS  Google Scholar 

  24. Ozay, Y., Ozyurt, S., Guzel, S., Cimbiz, A., Olgun, E.G., and Cayci, M.K., Wounds: Compendium Clin. Res. Pract., 2010, vol. 22, no. 10, pp. 261–267.

    Google Scholar 

  25. Acker, J.P. and McGann, L.E., Cryobiology, 2003, vol. 46, no. 2, pp. 197–202.

    Article  Google Scholar 

  26. Soni, B., Trivedi, U., and Madamvar, D., Biores. Tech., 2008, vol. 99, no. 1, pp. 188–194.

    Article  CAS  Google Scholar 

  27. Benedetti, S., Rinalducci, S., Benvenuti, F., Francogli, S., Pagliarani, S., Giorgi, L., et al., J. Chromat. B, 2006, vol. 833, no. 1, pp. 12–18.

    Article  CAS  Google Scholar 

  28. El-Baky, H.H.A., El-Baz, F.K., and El-Baroty, G.S., J. Med. Plants Res., 2008, vol. 2, no. 10, pp. 192–300.

    Google Scholar 

  29. Murugan, T. and Radhamadhavan, J., J. Pharm. Res., 2011, vol. 4, no. 11, pp. 4161–4163.

    Google Scholar 

  30. Mayer, A.M. and Hamann, M.T., Marine Biotech., 2004, vol. 6, no. 1, pp. 37–52.

    Article  CAS  Google Scholar 

  31. Vinay, K., Usmani, S.K., and Shrivastava, J.N., Vegetos, 2009, vol. 22, no. 2, pp. 83–89.

    Google Scholar 

  32. Kumar, A., Saini, P., and Shrivastava, J.N., Ind. J. Exp. Biol., 2009, vol. 47, pp. 57–62.

    Google Scholar 

  33. Kumar, V., Bhatnagar, A.K., and Srivastava, J.N., J. Med. Plants Res., 2011, vol. 5, no. 32, pp. 7043–7048.

    CAS  Google Scholar 

  34. Tuney, İ., Cadirci, B.H., Unal, D., and Sukatar, A., Turk. J. Biol., 2006, vol. 30, no. 3, pp. 171–175.

    Google Scholar 

  35. Sivakumar, J. and Santhanam, P., Recent Res.Sci. Tech., 2011, vol. 3, no. 4, pp. 158–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Koohi-Dehkordi.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All appropriate international and institutional guidance for the surveillance of mice were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, N., Fazilati, M., Salavati, H. et al. The Topical Cream Produced from Phycocyanin of Spirulina platensis Accelerates Wound Healing in Mice Infected with Candida albicans . Appl Biochem Microbiol 56, 583–589 (2020). https://doi.org/10.1134/S0003683820050166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820050166

Keywords:

Navigation