Skip to main content

Advertisement

Log in

Biochip for the Simultaneous Identification of Beta-Lactamase and Carbapenemase Genes Conferring Bacterial Resistance to Beta-Lactam Antibiotics

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Bacterial beta-lactamases and carbapenemases confer resistance to beta-lactam antibiotics, including penicillins, cephalosporins, carbapenems, and monobactams. Their wide distribution among the bacteria that cause infectious diseases in humans and animals represent a global threat. We have developed a biochip with colorimetric detection based on horseradish peroxidase for the simultaneous identification of genes for all clinically relevant class A beta-lactamases and carbapenemases of classes A, B, and D, including 25 single substitutions in the nucleotide sequence encoding the key amino acid substitutions in class A beta-lactamases. The conditions for allele-specific hybridization of biotin-labeled target DNA with oligonucleotide probes immobilized on the surface of the biochip have been optimized. A method of multiplex amplification of all of the studied genes in one reaction with the simultaneous incorporation of biotin was developed to obtain the target DNA. The biochip was validated with mixtures of the beta-lactamase and carbapenemase genes, as well as 68 DNA samples isolated from clinical strains of gram-negative bacteria. The total DNA sample analysis time was ~4 h. A high specificity of the identification of genes in mixtures was demonstrated, which can be used in the study of multidrug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Cassini, A., Hogberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., and Simonsen, G.S., Lancet Infect. Dis., vol. 19, no. 1, pp. 56–66.

  2. Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heuer, O.E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J.M., Segovia, C., Sigauque, B., Tacconelli, E., Wellington, E., and Vila, J., New Infections, 2015, vol. 16, pp. 22–29.

    Article  Google Scholar 

  3. Holmes, A.H., Moore, L.S.P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., and Piddock, L.J., Lancet, 2016, vol. 387, no. 10014, pp. 176–187.

    Article  CAS  Google Scholar 

  4. Bush, K., Antimicrob. Agents Chemother., 2018, vol. 62, no. 10, pp. 1–20.

    Article  Google Scholar 

  5. Bonomo, R.A., Spring Harb. Perspect. Med., 2017, vol. 7, no. 1, pp. 1–16.

    Google Scholar 

  6. Bush, K. and Bradford, P.A., Cold Spring Harb. Perspect. Med., 2016, vol. 6, no. 8, pp. 1–22.

    Article  Google Scholar 

  7. van Duin, D. and Doi, Y., Virulence, 2017, vol. 8, no. 4, pp. 460–469.

    Article  CAS  Google Scholar 

  8. Naas, T., Dortet, L., and Iorga, B.I., Curr. Drug. Targets, 2016, vol. 17, no. 9, pp. 1006–1028.

    Article  CAS  Google Scholar 

  9. Jean, S-S., Lee, W-S., Lam, C., Hsu, C-W., Chen, R-J., and Hsueh, P-R., Future Microbiol., 2015, vol. 10, no. 3, pp. 407–425.

    Article  CAS  Google Scholar 

  10. Somboro, A.M., Osei, S.J., Amoako, D.G., Essack, S.Y., and Bester, L.A., Appl. Environ. Microbiol., 2018, vol. 7, no. 18. pii: e00698-18.

    Google Scholar 

  11. Wu, W., Feng, Y., Tang, G., Qiao, F., McNally, A., and Zong, Z., Clin. Microbiol. Rev., 2019, vol. 32, no. 2. pii: e00115-18.

    Article  CAS  Google Scholar 

  12. Eichenberger, E.M. and Thaden, J.T., Antibiotics (Basel), 2019, vol. 8, no. 2. pii: E37.

    Article  Google Scholar 

  13. Groundwater, P.W., Xu, S., Lai, F., Varadi, L., Tan, J., Perry, J.D., and Hibbs, D.E., Future Med. Chem., 2016, vol. 8, no. 9, pp. 993–1012.

    Article  CAS  Google Scholar 

  14. Evans, B.A. and Amyes, S.G., Clin. Microbiol. Rev., 2014, vol. 27, no. 2, pp. 241–263.

    Article  Google Scholar 

  15. Geisinger, E. and Isberg, R.R., J. Infect. Dis., 2017, vol. 215, no. S1, pp. S9–S17.

    Article  CAS  Google Scholar 

  16. Hammoudi, D., Moubareck, C.A., and Moubareck, D., J. Microbiol. Methods, 2014, vol. 107, pp. 106–118.

    Article  CAS  Google Scholar 

  17. Fleece, M.E., Pholwat, S., Mathers, A.J., and Houpt, E.R., Expert Rev. Mol. Diagn., 2018, vol. 18, no. 3, pp. 207–217.

    Article  CAS  Google Scholar 

  18. Sekyere, J.O., Govinden, U., and Essack, S.Y., J. Appl. Microbiol., 2015, vol. 119, no. 5, pp. 1219–1233.

    Article  Google Scholar 

  19. Murugan, N., Malathi, J., Therese, K.L., Narahari, H., and Madhavan, R., Kaohsiung J. Med. Sci., 2018, vol. 34, no. 2, p. 79. e88.

  20. Lowman, W., Marais, M., Ahmed, K., and Marcus, L., J. Hosp. Infect., 2014, vol. 88, no. 2, pp. 66–71.

    Article  CAS  Google Scholar 

  21. Ledeboer, N.A. and Hodinka, R.L., J. Clin. Microbiol., 2011, vol. 9, suppl., pp. S20–S24.

    Article  Google Scholar 

  22. Moore, N.M., Canton, R., Carretto, E., Peterson, L.R., Sautter, R.L., Traczewski, M.M., and Carba-R Study Team, J. Clin. Microbiol., 2017, vol. 55, no. 7, pp. 2268–2275.

    Article  CAS  Google Scholar 

  23. Ledeboer, N.A., Lopansri, B.K., Dhiman, N., Cavagnolo, R., Carroll, K.C., Granato, P., Thomson, R.Jr., Butler-Wu, S.M., Berger, H., Samuel, L., Pancholi, P., Swyers, L., Hansen, G.T., Tran, N.K., Polage, C.R., Thomson, K.S., Hanson, N.D., Winegar, R., and Buchan, B.W., J. Clin. Microbiol., 2015, vol. 53, no. 8, pp. 2460–2472.

    Article  CAS  Google Scholar 

  24. Rubtsova, M.Yu., Ulyashova, M.M., Edelstein, M.V., and Egorov, A.M., Biosens. Bioelectron., 2010, vol. 26, no. 4, p. 1252–1260.

    Article  CAS  Google Scholar 

  25. Ulyashova, M.M., Khalilova, Yu.I., Rubtsova, M.Yu., Edelstein, M.V., Alexandrova, I.M., and Egorov, A.M., Acta Naturae, 2010, vol. 2, no. 3, pp. 101–109.

    Article  Google Scholar 

  26. Sukhorukova, M.V., Eidel’shtein, M.V., Skleenova, E.Yu., Ivanchik, N.V., Timokhova, A.V., Dekhnich, A.V., and Kozlov, R.S., Klin. Mikrobiol. Antimikrob. Khimioter., 2014, vol. 16, no. 4, pp. 254–265.

    Google Scholar 

  27. Bush, K., J. Glob. Antimicrob. Resist., 2013, vol. 1, no. 1, pp. 7–16.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 15-14-00014-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Rubtsova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubtsova, M.Y., Ulyashova, M.M., Pobolelova, Y.I. et al. Biochip for the Simultaneous Identification of Beta-Lactamase and Carbapenemase Genes Conferring Bacterial Resistance to Beta-Lactam Antibiotics. Appl Biochem Microbiol 56, 130–140 (2020). https://doi.org/10.1134/S000368382002012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382002012X

Keywords: