Abstract
Bacterial beta-lactamases and carbapenemases confer resistance to beta-lactam antibiotics, including penicillins, cephalosporins, carbapenems, and monobactams. Their wide distribution among the bacteria that cause infectious diseases in humans and animals represent a global threat. We have developed a biochip with colorimetric detection based on horseradish peroxidase for the simultaneous identification of genes for all clinically relevant class A beta-lactamases and carbapenemases of classes A, B, and D, including 25 single substitutions in the nucleotide sequence encoding the key amino acid substitutions in class A beta-lactamases. The conditions for allele-specific hybridization of biotin-labeled target DNA with oligonucleotide probes immobilized on the surface of the biochip have been optimized. A method of multiplex amplification of all of the studied genes in one reaction with the simultaneous incorporation of biotin was developed to obtain the target DNA. The biochip was validated with mixtures of the beta-lactamase and carbapenemase genes, as well as 68 DNA samples isolated from clinical strains of gram-negative bacteria. The total DNA sample analysis time was ~4 h. A high specificity of the identification of genes in mixtures was demonstrated, which can be used in the study of multidrug-resistant bacteria.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.REFERENCES
Cassini, A., Hogberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., and Simonsen, G.S., Lancet Infect. Dis., vol. 19, no. 1, pp. 56–66.
Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heuer, O.E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J.M., Segovia, C., Sigauque, B., Tacconelli, E., Wellington, E., and Vila, J., New Infections, 2015, vol. 16, pp. 22–29.
Holmes, A.H., Moore, L.S.P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., and Piddock, L.J., Lancet, 2016, vol. 387, no. 10014, pp. 176–187.
Bush, K., Antimicrob. Agents Chemother., 2018, vol. 62, no. 10, pp. 1–20.
Bonomo, R.A., Spring Harb. Perspect. Med., 2017, vol. 7, no. 1, pp. 1–16.
Bush, K. and Bradford, P.A., Cold Spring Harb. Perspect. Med., 2016, vol. 6, no. 8, pp. 1–22.
van Duin, D. and Doi, Y., Virulence, 2017, vol. 8, no. 4, pp. 460–469.
Naas, T., Dortet, L., and Iorga, B.I., Curr. Drug. Targets, 2016, vol. 17, no. 9, pp. 1006–1028.
Jean, S-S., Lee, W-S., Lam, C., Hsu, C-W., Chen, R-J., and Hsueh, P-R., Future Microbiol., 2015, vol. 10, no. 3, pp. 407–425.
Somboro, A.M., Osei, S.J., Amoako, D.G., Essack, S.Y., and Bester, L.A., Appl. Environ. Microbiol., 2018, vol. 7, no. 18. pii: e00698-18.
Wu, W., Feng, Y., Tang, G., Qiao, F., McNally, A., and Zong, Z., Clin. Microbiol. Rev., 2019, vol. 32, no. 2. pii: e00115-18.
Eichenberger, E.M. and Thaden, J.T., Antibiotics (Basel), 2019, vol. 8, no. 2. pii: E37.
Groundwater, P.W., Xu, S., Lai, F., Varadi, L., Tan, J., Perry, J.D., and Hibbs, D.E., Future Med. Chem., 2016, vol. 8, no. 9, pp. 993–1012.
Evans, B.A. and Amyes, S.G., Clin. Microbiol. Rev., 2014, vol. 27, no. 2, pp. 241–263.
Geisinger, E. and Isberg, R.R., J. Infect. Dis., 2017, vol. 215, no. S1, pp. S9–S17.
Hammoudi, D., Moubareck, C.A., and Moubareck, D., J. Microbiol. Methods, 2014, vol. 107, pp. 106–118.
Fleece, M.E., Pholwat, S., Mathers, A.J., and Houpt, E.R., Expert Rev. Mol. Diagn., 2018, vol. 18, no. 3, pp. 207–217.
Sekyere, J.O., Govinden, U., and Essack, S.Y., J. Appl. Microbiol., 2015, vol. 119, no. 5, pp. 1219–1233.
Murugan, N., Malathi, J., Therese, K.L., Narahari, H., and Madhavan, R., Kaohsiung J. Med. Sci., 2018, vol. 34, no. 2, p. 79. e88.
Lowman, W., Marais, M., Ahmed, K., and Marcus, L., J. Hosp. Infect., 2014, vol. 88, no. 2, pp. 66–71.
Ledeboer, N.A. and Hodinka, R.L., J. Clin. Microbiol., 2011, vol. 9, suppl., pp. S20–S24.
Moore, N.M., Canton, R., Carretto, E., Peterson, L.R., Sautter, R.L., Traczewski, M.M., and Carba-R Study Team, J. Clin. Microbiol., 2017, vol. 55, no. 7, pp. 2268–2275.
Ledeboer, N.A., Lopansri, B.K., Dhiman, N., Cavagnolo, R., Carroll, K.C., Granato, P., Thomson, R.Jr., Butler-Wu, S.M., Berger, H., Samuel, L., Pancholi, P., Swyers, L., Hansen, G.T., Tran, N.K., Polage, C.R., Thomson, K.S., Hanson, N.D., Winegar, R., and Buchan, B.W., J. Clin. Microbiol., 2015, vol. 53, no. 8, pp. 2460–2472.
Rubtsova, M.Yu., Ulyashova, M.M., Edelstein, M.V., and Egorov, A.M., Biosens. Bioelectron., 2010, vol. 26, no. 4, p. 1252–1260.
Ulyashova, M.M., Khalilova, Yu.I., Rubtsova, M.Yu., Edelstein, M.V., Alexandrova, I.M., and Egorov, A.M., Acta Naturae, 2010, vol. 2, no. 3, pp. 101–109.
Sukhorukova, M.V., Eidel’shtein, M.V., Skleenova, E.Yu., Ivanchik, N.V., Timokhova, A.V., Dekhnich, A.V., and Kozlov, R.S., Klin. Mikrobiol. Antimikrob. Khimioter., 2014, vol. 16, no. 4, pp. 254–265.
Bush, K., J. Glob. Antimicrob. Resist., 2013, vol. 1, no. 1, pp. 7–16.
Funding
This work was supported by the Russian Science Foundation (project no. 15-14-00014-C).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.
Additional information
Translated by A. Panyushkina
Rights and permissions
About this article
Cite this article
Rubtsova, M.Y., Ulyashova, M.M., Pobolelova, Y.I. et al. Biochip for the Simultaneous Identification of Beta-Lactamase and Carbapenemase Genes Conferring Bacterial Resistance to Beta-Lactam Antibiotics. Appl Biochem Microbiol 56, 130–140 (2020). https://doi.org/10.1134/S000368382002012X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S000368382002012X


