Skip to main content
Log in

The Role of LaeA and LovE Regulators in Lovastatin Biosynthesis with Exogenous Polyamines in Aspergillus terreus

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The filamentous fungus Aspergillus terreus is the main industrial producer of a cholesterol-lowering drug, lovastatin, and simvastatin obtained on its basis. The biosynthesis of lovastatin in A. terreus is under the control of two major positive regulators, the LovE pathway-specific regulator and LaeA global regulator of the secondary metabolism of fungi. It is shown that laeA expression can be negatively regulated by LovE, the Zn2Cys6 transcription factor of lovastatin biosynthesis. The overexpression of lovE under the control of the gpdA constitutive promoter from Aspergillus nidulans, which results in a 10- to 30-fold increase in lovastatin production is accompanied by a decrease in laeA expression in the fermentation process. The observed negative interrelationship between the LovE and LaeA regulators consists of the downregulation of lov resistance and transport genes in A. terreus with an additional copy of lovE and phenotypically manifests itself as polyamine toxicity for lovastatin production. Polyamine addition into the medium in the course of fermentation of A. terreus OE::lovE leads to a decrease in the lovastatin production by 30–40% and inhibited the expression of the lov and laeA genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Manzoni, M. and Rollini, M., Appl. Microbiol. Biotechnol., 2002, vol. 58, no. 5, pp. 555–564.

    Article  CAS  Google Scholar 

  2. Atli, B. and Yamac, M., Int. J. Med. Mushrooms, 2012, vol. 14, no. 2, pp. 149–159.

    Article  CAS  Google Scholar 

  3. Keller, N.P., Nat. Chem. Biol., 2015, vol. 11, no. 9, pp. 671–677.

    Article  CAS  Google Scholar 

  4. Chamilos, G., Lewis, R.E., and Kontoyiannis, D.P., Antimicrob. Agents Chemother., 2006, vol. 50, no. 1, pp. 96–103.

    Article  CAS  Google Scholar 

  5. Rodrigues, M.L., MBio, 2018, vol. 9, no. 5. e01755-18.

    Article  Google Scholar 

  6. Subazini, T.K. and Kumar, G.R., Bioinformation, 2011, vol. 6, no. 7, pp. 250–254.

    Article  Google Scholar 

  7. Jia, Z., Zhang, X., Cao, X., Liu, J., and Qin, B., Ann. Microbiol., 2011, vol. 61, no. 3, pp. 615–621.

    Article  CAS  Google Scholar 

  8. Kennedy, J., Auclair, K., Kendrew, S.G., Park, C., Vederas, J.C., Hutchinson, C., Auclais, K., Kendrew, S.G., Park, C., Vederas, J.C., and Hutchinson, C.R., Science, 1999, vol. 284, no. 5418, pp. 1368–1372.

    Article  CAS  Google Scholar 

  9. Bok, J.W. and Keller, N.P., Eukaryot. Cell, 2004, vol. 3, no. 2, pp. 527–535.

    Article  CAS  Google Scholar 

  10. Huang, X. and Li, H., Chin. Med. J. (Engl.), 2009, vol. 122, no. 15, pp. 1800–1805.

    CAS  Google Scholar 

  11. Barrios- González, J. and Miranda, R.U., Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 4, pp. 869–883.

  12. Barrios- González, J., Baños, J.G., Covarrubias, A.A., and Garay-Arroyo, A., Appl. Microbiol. Biotechnol., 2008, vol. 79, no. 2, pp. 179–186.

  13. Palonen, E.K., Raina, S., Brandt, A., Meriluoto, J., Keshavarz, T., and Soini, J., Microorganisms, 2017, vol. 5, no. 1, p. E12.

    Article  Google Scholar 

  14. Zhgun, A.A., Dumina, M.V., Voinova, T.M., Dzhavakhiya, V.V., and Eldarov, M.A., Appl. Biochem. M-icrobiol., 2018, vol. 54, no. 2, pp. 188–197.

    Article  CAS  Google Scholar 

  15. Zhgun, A.A., Nuraeva, G.K., Dumina, M.V., Voinova, T.M., Dzhavakhiya, V.V., and Eldarov, M.A., App-l. Biochem. Microbiol., 2019, vol. 55, no. 3, pp. 244–255.

    Google Scholar 

  16. Huang, X., Tang, S., Zheng, L., Teng, Y., Yang, Y., Zhu, J., and Lu, X., ACS Synth. Biol., 2019, vol. 8, no. 4, pp. 818–825.

    Article  CAS  Google Scholar 

  17. Mulder, K., Mulinari, F., Franco, O., Soares, M., Magalhes, B., and Parachin, N., Biotechnol. Adv., 2015, vol. 33, no. 6, pp. 648–665.

    Article  CAS  Google Scholar 

  18. RF Patent no. 2261901, 2005.

  19. Kodadek, T., Cell. Mol. Biol. Res., 1993, vol. 39, no. 4, pp. 355–360.

    CAS  PubMed  Google Scholar 

  20. Lu, G. and Moriyama, E.N., Brief. Bioinform., 2004, vol. 5, no. 4, pp. 378–388.

    Article  CAS  Google Scholar 

  21. Dumina, M.V., Zhgun, A.A., Kerpichnikov, I.V., Domracheva, A.G., Novak, M.I., Valiachmetov, A.Ya., Knorre, D.A., Severin, F.F., Eldarov, M.A., and Bartoshevich, Yu.E., Appl. Biochem. Microbiol., 2013, vol. 49, no. 4, pp. 368–377.

    Article  CAS  Google Scholar 

  22. Dumina, M.V., Zhgun, A.A., Novak, M.I., Domratcheva, A.G., Petukhov, D.V., Dzhavakhiya, V.V., Eldarov, M.A., and Bartoshevitch, Iu.E., World J. Microbiol. Biotechnol., 2014, vol. 30, no. 11, pp. 2933–2941.

    Article  CAS  Google Scholar 

  23. Barriuso, J., Nguyen, D., Li, J., Roberts, J., MacNevin, G., Chaytor, J., Marcus, S., Vederas, J., and Ro, D.-K., J. Am. Chem. Soc., 2011, vol. 133, no. 21, pp. 8078–8081.

    Article  CAS  Google Scholar 

  24. Xu, W., Chooi, Y.-H., Choi, J., Li, S., Vederas, J., Da, SilvaN., and Tang, Y., Angew. Chemie Int. Ed., 2013, vol. 52, no. 25, pp. 6472–6475.

    Article  CAS  Google Scholar 

  25. Martin, J., Garcia-Estrada, C., Kosalkova, K., Ullan, R., Albillos, S., and Martin, J.-F., Fungal Genet. Biol., 2012, vol. 49, no. 12, pp. 1004–1013.

    Article  CAS  Google Scholar 

  26. Zhgun, A.A., Kalinin, S.G., Novak, M.I., Domracheva, A.G., Petukhov, D.V., Dzhavakhiya, V.V., El’darov, M.A., and Bartoshevich. Yu.E, Izv. Vyssh. Uchebn. Zaved.,Prikl. Khim. Biotekhnol., 2015, vol. 14, no. 3, pp. 47–54.

    Google Scholar 

  27. Dumina, M.V., Zhgun, A.A., Domracheva, A.G., Novak, M.I., and El’darov, M.A., Russ. J. Genet., 2012, vol. 48, no. 8, pp. 778–784.

    Article  CAS  Google Scholar 

  28. Zhgun, A.A., Ivanova, M.A., Domracheva, A.G., Novak, M.I., Elidarov, M.A., Skryabin, K.G., and Bartoshevich, Yu.E., Appl. Biochem. Microbiol., 2008, vol. 44, no. 6, pp. 600–607.

    Article  CAS  Google Scholar 

  29. Tabor, C.W. and Tabor, H., Microbiol. Rev., 1985, vol. 49, pp. 81–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brakhage, A.A., Nat. Rev. Microbiol., 2013, vol. 11, no. 1, pp. 21–32.

    Article  CAS  Google Scholar 

  31. Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., and Ralser, M., J. Mol. Biol., 2015, vol. 427, no. 21, pp. 3389–3406.

    Article  CAS  Google Scholar 

  32. Casero, R.A. and Pegg, A.E., Biochem. J., 2009, vol. 421, no. 3, pp. 323–338.

    Article  CAS  Google Scholar 

  33. Persson, L., Essays Biochem., 2009, vol. 46, pp. 11–24.

    Article  CAS  Google Scholar 

  34. Pegg, A.E., Chem. Res. Toxicol., 2013, vol. 26, no. 12, pp. 1782–1800.

    Article  CAS  Google Scholar 

  35. Kramer, D.L., Diegelman, P., Jell, J., Vujcic, S., Merali, S., and Porter, C.W., J. Biol. Chem., 2008, vol. 283, no. 7, pp. 4241–4251.

    Article  CAS  Google Scholar 

  36. Shi, L. and Tu, B.P., Curr. Opin. Cell Biol., 2015, vol. 33, pp. 125–131.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.G. Dzhavakhiya and T.M. Voinova (All-Russia Research Institute of Phytopathology) and V.V. Dzhavakhiya (Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences) for the A. terreus HY strain provided for the study of molecular and biological properties and to M.A. Dumina (Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences) and N.A. Vytnova (Department of Biology, Moscow State University) for preparation of the E6 strain.

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 19-04-01173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhgun.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhgun, A.A., Nuraeva, G.K. & Eldarov, M.A. The Role of LaeA and LovE Regulators in Lovastatin Biosynthesis with Exogenous Polyamines in Aspergillus terreus. Appl Biochem Microbiol 55, 639–648 (2019). https://doi.org/10.1134/S0003683819060176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819060176

Keywords:

Navigation