Skip to main content
Log in

SpyCatcher/SpyTag-Mediated Self-Assembly of a Supramolecular Complex for Improved Biocatalytic Production of Trehalose

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Trehalose has been utilized in the food, cosmetic, and pharmaceutical industries due to its ability to stabilize biomolecules. In this study, we developed a strategy of constructing a self-assembling supramolecular multienzyme complex for the production of trehalose using SpyCatcher and SpyTag. Maltooligosyl trehalose synthase (MTS) and maltooligosyl trehalose trehalohydrolase (MTH) were fused to SpyCatcher and its corresponding ligand, SpyTag. The fused MTS-SpyCatcher (MTS-SC) and MTH-SpyTag (MTH-ST) self-assembled into a supramolecular multienzyme complex (MTS-MTH) via the isopeptide bonds formed between SpyCatcher and SpyTag. MTS-MTH showed the faster reaction rate, which reached the peak of trehalose conversion rate 10 h earlier than the free enzymes. The results demonstrate that the multienzyme self-assembly via the protein-peptide interactions of SpyCatcher and SpyTag can increase the catalytic efficiency of sequential reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ohtake, S. and Wang, Y.J., J. Pharm. Sci., 2011, vol. 100, no. 6, pp. 2020–2053.

    Article  CAS  Google Scholar 

  2. Sola-Penna, M. and Meyer-Fernandes, J.R., Arch. Biochem. Biophys., 1998, vol. 360, no. 1, pp. 10–14.

    Article  CAS  Google Scholar 

  3. Elbein, A.D., Pan, Y.T., Pastuszak, I., and Carroll, D., Glycobiology, 2003, vol. 13, no. 4, pp. 17–27.

    Article  Google Scholar 

  4. Crowe, J.H., Crowe, L.M., and Chapman, D., Science, 1984, vol. 223, no. 4637, pp. 701–703.

    Article  CAS  Google Scholar 

  5. Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P.M., Waalkens-Berendsen D.H., et al., Food Chem. Toxicol., 2002, vol. 40, no. 7, pp. 871–898.

    Article  CAS  Google Scholar 

  6. Feofilova, E.P., Usov, A.I., Mysyakina, I.S., and Kochkina, G.A., Microbiology, 2014, vol. 83, no. 3, pp. 184–194.

    Article  CAS  Google Scholar 

  7. Eastmond, P.J. and Graham I.A., Curr. Opin. Plant Bio-l., 2003, vol. 6, no. 3, pp. 231–235.

    Article  CAS  Google Scholar 

  8. Nishimoto, T., Nakano, M., Nakada, T., Chaen, H., Fukuda, S., Sugimoto, T., et al., Biosci. Biotech. Bioc., 1996, vol. 60, no. 4, pp. 640–644.

    Article  CAS  Google Scholar 

  9. Maruta, K., Mitsuzumi, H., Nakada, T., Kubota, M., Chaen, H., Fukuda, S., et al., Biochim. Biophys. Acta, 1996, vol. 1291, no. 3, pp. 1–181.

    Article  Google Scholar 

  10. Nakada, T., Maruta, K., Mitsuzumi, H., Kubota, M., Chaen, H., Sugimoto, T., et al., Biosci. Biotech. Biochem., 1996, vol. 59, no. 12, pp. 2215–2218.

    Article  Google Scholar 

  11. Wheeldon, I., Minteer, S.D., Banta, S., Barton, S.C., Atanassov, P., and Sigman, M., Nat. Chem., 2016, vol. 8, no. 4, pp. 299–309.

    Article  CAS  Google Scholar 

  12. Yang, Z., Gao, X., Xie, H., Wang, F., Ren, Y., and Wei, D., Biotechnol. Bioeng., 2017, vol. 114, no. 2, pp. 457–462.

    Article  CAS  Google Scholar 

  13. Gao, X., Yang, S., Zhao, C., Ren, Y., and Wei, D., Angew. Chem. Int. Ed. Engl., 2014, vol. 53, no. 51, pp. 14 027–14 030.

    Article  Google Scholar 

  14. Kim, S. and Hahn, J.S., J. Biotechnol., 2014, vol. 192, no. 20, pp. 192–196.

    Article  CAS  Google Scholar 

  15. Reddington, S.C., and Howarth, M., Curr. Opin. Chem. Biol., 2015, vol. 29, pp. 94–99.

    Article  CAS  Google Scholar 

  16. Pessino, V., Citron, R., Feng, S., and Huang, B., ChemBioChem, 2017, vol. 18, no. 15, pp. 1492–1495.

    Article  CAS  Google Scholar 

  17. Veggiani, G., Zakeri, B., and Howarth, M., Trends. Biotechnol., 2014, vol. 32, no. 10, pp. 506–512.

    Article  CAS  Google Scholar 

  18. Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-linek, U., Moy, V.T., and Howarth, M., Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 12, pp. 4347–4348.

    Article  CAS  Google Scholar 

  19. Zakeri, B., and Howarth, M., J. Am. Chem. Soc., 2010, vol. 132, no. 13, pp. 4526–4527.

    Article  CAS  Google Scholar 

  20. Xu, C., Xu, Q., Huang, H., and Jiang, L., Biosci. Biotechnol. Biochem., 2018, vol. 82, no. 9, pp. 1473–1479.

    Article  CAS  Google Scholar 

  21. Si, M., Xu, Q., and Jiang, L., Plos One, 2016, vol. 11, no. 9.

  22. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  Google Scholar 

  23. Su, L., Wu, S., Feng, J., and Wu, J., Bioproc. Biosyst. Eng., 2019, vol. 42, no. 3, pp. 345–354.

    Article  CAS  Google Scholar 

  24. Bao, J., Liu, N., Xu, Q., Zhu, L., Huang, H., and J-iang, L., J. Agr. Food. Chem., 2018, no. 66, pp. 8061–8068.

  25. Gilbert, C., Howarth, M., Harwood, C.R., and Ellis, T., ACS. Synth. Biol., 2017, vol. 6, no. 6, pp. 957–967.

    Article  CAS  Google Scholar 

  26. Veggiani, G., Nakamura, T., Brenner, M.D., Gayet R.V., Yan, J., Robinson, C.V., and Howarth, M., Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 5, pp. 1202–1207.

    Article  CAS  Google Scholar 

  27. Kobayashi, K., Komeda, T., Miura, Y., Kettoku, M., and Kato, M., J. Ferment. Bioeng., 1997, vol. 83, no. 3, pp. 296–298.

    Article  CAS  Google Scholar 

  28. Kim, Y.H., Kwon, T.K., Park, S., Seo, H.S., Cheong, J.J., Kim, C.H., et al., Appl. Environ. Microbiol., 2000, vol. 66, no. 11, pp. 4620–4624.

    Article  CAS  Google Scholar 

  29. Mukai, K., Tabuchi, A., Nakada, T., Shibuya, T., Chaen, H., Fukuda, S., et al., Starch-Starke, 1997, no. 49, pp. 26–30.

  30. Rehman, H.U., Aman, A., Nawaz, M.A., and Qader, S.A.U., Food Hydrocolloids, 2015, no. 43, pp. 819–824.

  31. Szasz, G., Eur. J. Clin. Chem. Clin. Biochem, 1974, vol. 12, no. 4, pp. 166–170.

    CAS  Google Scholar 

  32. Hu, Y., Tang, S., Jiang, L., Zou, B., Yang, J., and Huang, H. Process Biochem., 2012, vol. 47, no. 12, pp. 2291–2299.

    Article  CAS  Google Scholar 

  33. Pascale, D.D., Lernia, I.D., Sasso, M.P., Furia, A., Rosa, M.D., and Rossi, M., Extremophiles, 2002, vol. 6, no. 6, pp. 463–468.

    Article  Google Scholar 

  34. Wang, J.H., Tsai, M.Y., Lee, G.C., and Shaw, J.F., J. Agr. Food Chem., 2007, vol. 55, no. 4, pp. 1256–1263.

    Article  CAS  Google Scholar 

  35. Iturrate, L., Sánchez-Moreno, I., Doyagüez, E.G., and García-Junceda, E., Chem. Commun., 2009, no. 13, pp. 1721–1723.

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (no. 21606129, no. 31922070) and the Natural Science Fund for Colleges and Universities in Jiangsu Province (no. 17KJB416005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Tang or L. Jiang.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Tang, S., Xu, Q. et al. SpyCatcher/SpyTag-Mediated Self-Assembly of a Supramolecular Complex for Improved Biocatalytic Production of Trehalose. Appl Biochem Microbiol 55, 596–602 (2019). https://doi.org/10.1134/S0003683819060115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819060115

Keywords:

Navigation