Abstract
The impact of stress factors such as ethanol, acetic acid, and sodium chloride caused the accumulation of hydrogen peroxide in Escherichia coli cells and activation of the gene expression of the OxyR regulon. The development of oxidative stress depended on the nature and intensity of the impact of the stress factor. The determination of changes in cell susceptibility to external influences in the presence of the antioxidant thiourea, which neutralizes reactive oxygen species, demonstrated their involvement in the action of osmotic and acid stress. When the antioxidant was introduced, there was a slowdown in the death rate of cells subjected to lethal stress (decrease in CFU in culture to <0.01% of the initial amount) and a decrease in cell viability in the absence of activation of expression of antioxidant genes under conditions of less intense exposure (decrease in CFU to 10–0.01%). It can be assumed that, depending on the intensity of stress, reactive oxygen species can act either as a damaging agent or as a signal for the launch of protective mechanisms. Cells cultured under microaerobic conditions were more resistant to heat and more sensitive to the effects of acetic acid than cells grown under more intensive aeration.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.REFERENCES
Hassett, D.J. and Cohen, M.S., FASEB J., 1989, vol. 3, no. 14, pp. 2574–2582.
González-Flecha, B. and Demple, B., J. Biol. Chem., 1995, vol. 270, no. 23, pp. 13 681–13 687.
Korshunov, S. and Imlay, J.A., Mol. Microbiol., 2010, vol. 75, no. 6, pp. 1389–1401.
Imlay, J.A., Annu. Rev. Biochem., 2008, vol. 77, pp. 755–776.
Albesa, I., Becerra, M.C., Battán, P.C., and Páez, P.L., Biochem. Biophys. Res. Commun., 2004, vol. 317, no. 2, pp. 605–609.
Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J., Cell, 2007, vol. 130, no. 5, pp. 797–810.
Tkachenko, A.G., Akhova, A.V., Shumkov, M.S., and Nesterova, L.Y., Res. Microbiol., 2012, vol. 163, no. 2, pp. 83–91.
Dwyer, D.J., Belenky, P.A., Yang, J.H., MacDonald, I.C., Martell, JD., Takahashi, N., Chan, C.T., Lobritz, M.A., Braff, D., Schwarz, E.G., Ye, J.D., Pati, M., Vercruysse, M., Ralifo, P.S., Allison, K.R., Khalil, A.S., Ting, A.Y., Walker, G.C., and Collins, J.J., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 20, pp. 2100–2109.
Gunasekera, T.S., Csonka, L.N., and Paliy, O., J. Bacteriol., 2008, vol. 190, no. 10, pp. 3712–3720.
Bojanovič, K., D’Arrigo, I., and Long, K.S., Appl. Environ. Microbiol., 2017, vol. 83, no. 7. pii: e03236-16.
Schellhorn, H.E. and Stones, V.L., J. Bacteriol., 1992, vol. 174, no. 14, pp. 4769–4776.
Clements, M.O., Watson, S.P., and Foster, S.J., J. Bacteriol., 1999, vol. 181, no. 13, pp. 3898–3903.
Privalle, C.T. and Fridovich, I., Proc. Natl. Acad. Sci. U. S. A., 1987, vol. 84, no. 9, pp. 2723–2726.
Mols, M. and Abee, T., Environ. Microbiol., 2011, vol. 13, no. 6, pp. 1387–1394.
Espina, L., Somolinos, M., Ouazzou, A.A., Condón, S., García-Gonzalo, D., and Pagan, R., Int. J. Food M-icrob., 2012, vol. 159, no. 1, pp. 9–16.
Goswami, M., Mangoli, S.H., and Jawali, N., Antimicrob. Agents Chemother., 2006, vol. 50, no. 3, pp. 949–954.
Liu, Y. and Imlay, J.A., Science, 2013, vol. 339, no. 6124, pp. 1210–1213.
Benov, L. and Fridovich, I., J. Bacteriol., 1995, vol. 177, no. 11, pp. 3344–3346.
Mols, M., Pier, I., Zwietering, M.H., and Abee, T., Int. J. Food Microbiol., 2009, vol. 135, no. 3, pp. 303–311.
Bruno-Bárcena, J.M., Azcárate-Peril, M.A., and Hassan, H.M., Appl. Environ. Microbiol., 2010, vol. 76, no. 9, pp. 2747–2753.
Ding, H. and Demple, B., Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 16, pp. 8445–8449.
Miller, J., Experiments in Molecular Genetics, New York: Cold Spring Harbor, 1972.
VanBogelen, R.A., Kelley, P.M. and Neidhardt, F.C., J. Bacteriol., 1987, vol. 169, no. 1, pp. 26–32.
Rowley, G., Spector, M., Kormanec, J., and Roberts, M., Nat. Rev. Microbiol., 2006, vol. 4, no. 5, pp. 383–394.
Aslund, F., Zheng, M., Beckwith, J., and Storz, G., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, no. 11, pp. 6161–6165.
Kim, J.S., Choi, S.H., and Lee, J.K., J. Bacteriol., 2006, vol. 188, no. 24, pp. 8586–8592.
Randall, L.O., J. Biol. Chem., 1946, vol. 164, no. 2, pp. 521–527.
Anbar, M. and Neta, P., Int. J. Appl. Radiat. Isot., 1967, vol. 18, pp. 493–523.
Dodd, C.E., Richards, P.J., and Aldsworth, T.G., Int. J. Food Microbiol., 2007, vol. 120, nos. 1–2, pp. 46–50.
Fraud, S. and Poole, K., Antimicrob. Agents Chemother., 2011, vol. 55, no. 3, pp. 1068–1074.
Tkachenko, A.G., Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 108–127.
ACKNOWLEDGMENTS
The authors are grateful to Prof. Bruce Demple (Stony Brook University Medical School, Stony Brook, NY) for providing the E. coli strains.
Funding
The work was carried out as part of the state assignment (state registration no. 01201353249) and with partial financial support from the Russian Foundation for Basic Research (project no. 16-34-00095).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.
Additional information
Translated by A. Ostyak
Rights and permissions
About this article
Cite this article
Akhova, A.V., Sekatskaya, P.A. & Tkachenko, A.G. Formation of Associated Oxidative Stress in Cells of Escherichia coli Exposed to Different Environmental Stressors. Appl Biochem Microbiol 55, 582–587 (2019). https://doi.org/10.1134/S0003683819060036
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0003683819060036


