Skip to main content
Log in

Formation of Associated Oxidative Stress in Cells of Escherichia coli Exposed to Different Environmental Stressors

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The impact of stress factors such as ethanol, acetic acid, and sodium chloride caused the accumulation of hydrogen peroxide in Escherichia coli cells and activation of the gene expression of the OxyR regulon. The development of oxidative stress depended on the nature and intensity of the impact of the stress factor. The determination of changes in cell susceptibility to external influences in the presence of the antioxidant thiourea, which neutralizes reactive oxygen species, demonstrated their involvement in the action of osmotic and acid stress. When the antioxidant was introduced, there was a slowdown in the death rate of cells subjected to lethal stress (decrease in CFU in culture to <0.01% of the initial amount) and a decrease in cell viability in the absence of activation of expression of antioxidant genes under conditions of less intense exposure (decrease in CFU to 10–0.01%). It can be assumed that, depending on the intensity of stress, reactive oxygen species can act either as a damaging agent or as a signal for the launch of protective mechanisms. Cells cultured under microaerobic conditions were more resistant to heat and more sensitive to the effects of acetic acid than cells grown under more intensive aeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Hassett, D.J. and Cohen, M.S., FASEB J., 1989, vol. 3, no. 14, pp. 2574–2582.

    Article  CAS  Google Scholar 

  2. González-Flecha, B. and Demple, B., J. Biol. Chem., 1995, vol. 270, no. 23, pp. 13 681–13 687.

    Article  Google Scholar 

  3. Korshunov, S. and Imlay, J.A., Mol. Microbiol., 2010, vol. 75, no. 6, pp. 1389–1401.

    Article  CAS  Google Scholar 

  4. Imlay, J.A., Annu. Rev. Biochem., 2008, vol. 77, pp. 755–776.

    Article  CAS  Google Scholar 

  5. Albesa, I., Becerra, M.C., Battán, P.C., and Páez, P.L., Biochem. Biophys. Res. Commun., 2004, vol. 317, no. 2, pp. 605–609.

    Article  CAS  Google Scholar 

  6. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J., Cell, 2007, vol. 130, no. 5, pp. 797–810.

    Article  CAS  Google Scholar 

  7. Tkachenko, A.G., Akhova, A.V., Shumkov, M.S., and Nesterova, L.Y., Res. Microbiol., 2012, vol. 163, no. 2, pp. 83–91.

    Article  CAS  Google Scholar 

  8. Dwyer, D.J., Belenky, P.A., Yang, J.H., MacDonald, I.C., Martell, JD., Takahashi, N., Chan, C.T., Lobritz, M.A., Braff, D., Schwarz, E.G., Ye, J.D., Pati, M., Vercruysse, M., Ralifo, P.S., Allison, K.R., Khalil, A.S., Ting, A.Y., Walker, G.C., and Collins, J.J., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 20, pp. 2100–2109.

    Article  Google Scholar 

  9. Gunasekera, T.S., Csonka, L.N., and Paliy, O., J. Bacteriol., 2008, vol. 190, no. 10, pp. 3712–3720.

    Article  CAS  Google Scholar 

  10. Bojanovič, K., D’Arrigo, I., and Long, K.S., Appl. Environ. Microbiol., 2017, vol. 83, no. 7. pii: e03236-16.

    Article  Google Scholar 

  11. Schellhorn, H.E. and Stones, V.L., J. Bacteriol., 1992, vol. 174, no. 14, pp. 4769–4776.

    Article  CAS  Google Scholar 

  12. Clements, M.O., Watson, S.P., and Foster, S.J., J. Bacteriol., 1999, vol. 181, no. 13, pp. 3898–3903.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Privalle, C.T. and Fridovich, I., Proc. Natl. Acad. Sci. U. S. A., 1987, vol. 84, no. 9, pp. 2723–2726.

    Article  CAS  Google Scholar 

  14. Mols, M. and Abee, T., Environ. Microbiol., 2011, vol. 13, no. 6, pp. 1387–1394.

    Article  CAS  Google Scholar 

  15. Espina, L., Somolinos, M., Ouazzou, A.A., Condón, S., García-Gonzalo, D., and Pagan, R., Int. J. Food M-icrob., 2012, vol. 159, no. 1, pp. 9–16.

    Article  CAS  Google Scholar 

  16. Goswami, M., Mangoli, S.H., and Jawali, N., Antimicrob. Agents Chemother., 2006, vol. 50, no. 3, pp. 949–954.

    Article  CAS  Google Scholar 

  17. Liu, Y. and Imlay, J.A., Science, 2013, vol. 339, no. 6124, pp. 1210–1213.

    Article  CAS  Google Scholar 

  18. Benov, L. and Fridovich, I., J. Bacteriol., 1995, vol. 177, no. 11, pp. 3344–3346.

    Article  CAS  Google Scholar 

  19. Mols, M., Pier, I., Zwietering, M.H., and Abee, T., Int. J. Food Microbiol., 2009, vol. 135, no. 3, pp. 303–311.

    Article  CAS  Google Scholar 

  20. Bruno-Bárcena, J.M., Azcárate-Peril, M.A., and Hassan, H.M., Appl. Environ. Microbiol., 2010, vol. 76, no. 9, pp. 2747–2753.

    Article  Google Scholar 

  21. Ding, H. and Demple, B., Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 16, pp. 8445–8449.

    Article  CAS  Google Scholar 

  22. Miller, J., Experiments in Molecular Genetics, New York: Cold Spring Harbor, 1972.

  23. VanBogelen, R.A., Kelley, P.M. and Neidhardt, F.C., J. Bacteriol., 1987, vol. 169, no. 1, pp. 26–32.

    Article  CAS  Google Scholar 

  24. Rowley, G., Spector, M., Kormanec, J., and Roberts, M., Nat. Rev. Microbiol., 2006, vol. 4, no. 5, pp. 383–394.

    Article  CAS  Google Scholar 

  25. Aslund, F., Zheng, M., Beckwith, J., and Storz, G., Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, no. 11, pp. 6161–6165.

    Article  CAS  Google Scholar 

  26. Kim, J.S., Choi, S.H., and Lee, J.K., J. Bacteriol., 2006, vol. 188, no. 24, pp. 8586–8592.

    Article  CAS  Google Scholar 

  27. Randall, L.O., J. Biol. Chem., 1946, vol. 164, no. 2, pp. 521–527.

    CAS  PubMed  Google Scholar 

  28. Anbar, M. and Neta, P., Int. J. Appl. Radiat. Isot., 1967, vol. 18, pp. 493–523.

    Article  CAS  Google Scholar 

  29. Dodd, C.E., Richards, P.J., and Aldsworth, T.G., Int. J. Food Microbiol., 2007, vol. 120, nos. 1–2, pp. 46–50.

    Article  CAS  Google Scholar 

  30. Fraud, S. and Poole, K., Antimicrob. Agents Chemother., 2011, vol. 55, no. 3, pp. 1068–1074.

    Article  CAS  Google Scholar 

  31. Tkachenko, A.G., Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 108–127.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. Bruce Demple (Stony Brook University Medical School, Stony Brook, NY) for providing the E. coli strains.

Funding

The work was carried out as part of the state assignment (state registration no. 01201353249) and with partial financial support from the Russian Foundation for Basic Research (project no. 16-34-00095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Akhova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Ostyak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhova, A.V., Sekatskaya, P.A. & Tkachenko, A.G. Formation of Associated Oxidative Stress in Cells of Escherichia coli Exposed to Different Environmental Stressors. Appl Biochem Microbiol 55, 582–587 (2019). https://doi.org/10.1134/S0003683819060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819060036

Keywords: