Applied Biochemistry and Microbiology

, Volume 55, Issue 4, pp 414–419 | Cite as

Ferric Leaching of Low-Grade Zinc Concentrate with a Biologically Produced Solution

  • M. I. MuravyovEmail author
  • N. V. Fomchenko


The process of ferric leaching of a zinc concentrate (43.3% zinc, 2.03% copper, and 13.6% iron) with a biologically produced solution has been studied. Conditions that can increase its efficiency have been found. The extraction of copper and zinc was found to increase with an increase in temperature from 25 to 80°C. The effect of pH on this process was studied, and the extraction of metals was found to decrease with a decrease in pH from 1.3 to 0.7. It was determined that the Fe3+ concentration in the leaching solution did not affect copper recovery, while zinc recovery increased with an increase in the oxidant concentration. At a solid content in the suspension of 1%, the specific zinc leaching rate was 0.86 g/(g h), and for copper this rate was 0.46 g/(g h). These values decreased to 0.54 and 0.36 g/(g h), respectively, with an increase in pulp density of up to 10%. Thus, the parameters for effective concentrate leaching were found: a temperature of 80°C, a pH of 1.3, a solid content in the suspension equal to 10%, and an initial Fe3+ concentration of 25.0 g/L. Under these conditions, four cycles of ferric leaching of the concentrate were carried out, as a result of which 92.3% of zinc and 51.6% of copper were extracted into the solution. The contents of zinc and copper in the solids decreased to 6.17 and 1.82%, respectively.


leaching sulfidic concentrate sphalerite zinc biohydrometallurgy 



The work was supported by Russian Science Foundation (project no. 18-74-00003).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Ivanov, B.S., Kabirov, V.R., and Boduen, A.Ya., Vestn. VSGUTU, 2012, no. 1 (36), pp. 121–124.Google Scholar
  2. 2.
    Kaksonen, A.H., Boxall, N.J., Gumulya, Y., Khaleque, H.N., Morris, C., Bohu, T., Cheng, K.Y., Usher, K., and Lakaniemi, A.M., Hydrometallurgy, 2018, vol. 180, pp. 7–25.CrossRefGoogle Scholar
  3. 3.
    Demergasso, C., Véliz, R., Galleguillos, P., Marín, S., Acosta, M., Zepeda, V., Zeballos, J., Henríquez, F., Pizarro, R., and Bekios-Calfa, J., Hydrometallurgy, 2018, vol. 181, pp. 113–122.CrossRefGoogle Scholar
  4. 4.
    Ilankoon, I.M.S.K., Tang, Y., Ghorbani, Y., Northey, S., Yellishetty, M., Deng, X., and McBride, D., Miner. Eng., 2018, vol. 125, pp. 206–222.CrossRefGoogle Scholar
  5. 5.
    Muravyov, M.I. and Fomchenko, N.V., Appl. Biochem. Microbiol., 2013, vol. 49, no. 6, pp. 562–569.CrossRefGoogle Scholar
  6. 6.
    Priya, A. and Hait, S., Hydrometallurgy, 2018, vol. 177, pp. 132–139.CrossRefGoogle Scholar
  7. 7.
    Altinkay, P., Mäkinen, J., Kinnunen, P., Kolehmainen, E., Haapalainen, M., and Lundström, M., Miner. Eng., 2018, vol. 129, pp. 47–53.CrossRefGoogle Scholar
  8. 8.
    Potysz, A., van Hullebusch, E.D., and Kierczak, J., J. Environ. Manage., 2018, vol. 219, pp. 138–152.Google Scholar
  9. 9.
    Auerbach, R., Ratering, S., Bokelmann, K., Gellermann, C., Brämer, T., Baumann, R., and Schnell, S., J. Environ. Manage., 2019, vol. 232, pp. 428–437.CrossRefGoogle Scholar
  10. 10.
    Kaksonen, A.H., Särkijärvi, S., Peuraniemi, E., Junnikkala, S., Puhakka, J.A., and Tuovinen, O.H., Hydrometallurgy, 2017, vol. 168, pp. 135–140.CrossRefGoogle Scholar
  11. 11.
    Muravyov, M., Chem. Pap., 2019, vol. 73, no. 1, pp. 173–183.CrossRefGoogle Scholar
  12. 12.
    Belyi, A.V., Chernov, D.V., and Solopova, N.V., Hydrometallurgy, 2018, vol. 179, pp. 188–191.CrossRefGoogle Scholar
  13. 13.
    Johnson, D.B., Minerals, 2018, vol. 8, no. 8, p. 343.CrossRefGoogle Scholar
  14. 14.
    Muravyov, M.I., Fomchenko, N.V., and Kondrat’eva, T.F., Appl. Biochem. Microbiol., 2011, vol. 47, no. 6, pp. 607–614.CrossRefGoogle Scholar
  15. 15.
    Carranza, F., Iglesias, N., Mazuelos, A., Palencia, I., and Romero, R., Hydrometallurgy, 2004, vol. 71, nos. 3–4, pp. 413–420.CrossRefGoogle Scholar
  16. 16.
    Fomchenko, N.V., Muravyov, M.I., and Melamud, V.S., Appl. Biochem. Microbiol., 2018, vol. 54, no. 4, pp. 432–435.CrossRefGoogle Scholar
  17. 17.
    Fomchenko, N.V. and Muravyov, M.I., J. Environ. Manage., 2018, vol. 226, pp. 270–277.CrossRefGoogle Scholar
  18. 18.
    Panda, S., Akcil, A., Pradhan, N., and Deveci, H., Biores. Technol., 2015, vol. 196, pp. 694–706.CrossRefGoogle Scholar
  19. 19.
    Fomchenko, N.V. and Muravyov, M.I., Hydrometallurgy, 2017, vol. 174, pp. 116–122.CrossRefGoogle Scholar
  20. 20.
    Silverman, M.P. and Lundgren, D.C., J. Bacteriol., 1959, vol. 77, no. 5, pp. 642–647.Google Scholar
  21. 21.
    Davis, D.G. and Jacobsen, W.R., Anal. Chem., 1960, vol. 32, no. 2, pp. 215–217.CrossRefGoogle Scholar
  22. 22.
    Arpalahti, A. and Lundström, M., Miner. Eng., 2018, vol. 119, pp. 116–125.CrossRefGoogle Scholar
  23. 23.
    Mehta, A.P. and Murr, L.E., Hydrometallurgy, 1983, vol. 9, no. 3, pp. 235–256.CrossRefGoogle Scholar
  24. 24.
    Abraitis, P.K., Pattrick, R.A.D., Kelsall, G.H., and Vaughan, D.J., Miner. Mag., 2004, vol. 68, no. 2, pp. 343–351.CrossRefGoogle Scholar
  25. 25.
    Esmailbagi, M.R., Schaffie, M., Kamyabi, A., and Ranjbar, M., Hydrometallurgy, 2018, vol. 180, pp. 139–143.CrossRefGoogle Scholar
  26. 26.
    Jyothi, N., Sudha, K.N., and Natarajan, K.A., Int. J. Miner. Process., 1989, vol. 27, nos 3-4, pp. 189–203.CrossRefGoogle Scholar
  27. 27.
    Ghassa, S., Noaparast, M., Shafaei, S.Z., Abdollahi, H., Gharabaghi, M., and Boruomand, Z., Hydrometallurgy, 2017, vol. 171, pp. 362–373.CrossRefGoogle Scholar
  28. 28.
    Lorenzo-Tallafigo, J., Iglesias-Gonzalez, N., Romero, R., Mazuelos, A., and Carranza, F., Miner. Eng., 2018, vol. 125, pp. 50–59.CrossRefGoogle Scholar
  29. 29.
    Panda, S., Akcil, A., Pradhan, N., and Deveci, H., Biores. Technol., 2015, vol. 196, pp. 694–706.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia

Personalised recommendations