Skip to main content
Log in

Biosynthesis of Protoilludene Sesquiterpene Aryl Esters by Siberian Strains of the Genus Armillaria Fungi

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Secondary metabolites of the basidiomycetes of Armillaria borealis Marxm. and Korhonen, A. cepistipes Velen., A. gallica Marxm., A. ostoyae (Romagn.) Herink, and A. sinapina Bérubé and Dessur isolated in Southern Siberia (Krasnoyarsk region and Tyva Republic) and in the Far East (Sikhote-Alin) were studied. Metabolites belonging to the class of protoilludene sesquiterpene aryl esters of the melleolides group have been identified in the species A. borealis, A. cepistipes, and A. sinapina. The strains differ in the spectrum of synthesized melleolides. A. borealis strain 74g synthesized a wider range of melleolides than other strains of the species: melleolides B, C, D and H, melledonals B and C, 5'-O-methylmelledonal, 13-hydroxy-5'-O-methylmelledonal, and armillarinin. It was shown that the composition of the medium influenced the amount of synthesized metabolites. All of the studied strains synthesizing melleolides exhibited a toxicogenic and phytopathogenic effect on seeds and seedlings of Picea abies (L.) H. Karst. and Abies sibirica Ledeb. A significant decrease in seed germination energy, laboratory and ground seed germination, the development of the root system of conifer seedlings was revealed. The maximum inhibitory effect was shown by the culture fluid of A. borealis 74g with the greatest amounts and variety of melleolides in the metabolome profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Baumgartner, K., Coetzee, M.P., and Hoffmeister, D., Mol. Plant Pathol., 2011, vol. 12, no. 6, pp. 515–534.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wick, J., Heine, D., Lackner, G., Misiek, M., Tauber, J., Jagusch, H., Hertweck, Ch., and Hoffmeister, D., Appl. Environ. Microbiol., 2016, vol. 82, no. 4, pp. 1196–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Misiek, M. and Hoffmeister, D., Mycol. Progress, 2012, vol. 11, no. 1, pp. 7–15.

    Article  Google Scholar 

  4. Pavlov, I.N., Contemp. Probl. Ecol., 2015, vol. 8, no. 4, pp. 440–456.

  5. Pavlov, I.N., Litovka, Yu.A., Litvinova, E.A., Timofeev, A.A., Pashenova, N.V., Safronova, I.E., Kulakov, S.S., Mulyava, V.V., and Mulyava, V.E., AgroEkoInfo, 2017, vol. 29, no. 3.

  6. Metody eksperimental’noi mikologii (Experimental Mycology Methods), Bilai, V.I., Ed., Kiev: Naukova Dumka, 1982.

    Google Scholar 

  7. Maloy, O.C., Plant Dis. Rep., 1974, no. 58, pp. 902–904.

  8. Whitney, R.D., Myren, D.T., and Britnell, W.E., Can. J. For. Res., 1978, no. 8, pp. P. 348–351.

  9. Bukhalo, A.S., Vysshie s’’edobnye bazidiomitsety v chistoi kul’ture (Higher Edible Basidiomycetes in Pure Culture), Kiev: Naukova Dumka, 1988.

  10. Momose, I., Sekizava, R., Hosokawa, N., Iinuma, H., Matsui, S., Nakamura, H., Naganawa, H., Hamada, M., and Takeuchi, T., J. Antibiot., 2000, vol. 53, no. 2, pp. 137–143.

    Article  CAS  PubMed  Google Scholar 

  11. Cardillo, R. and Nasini, G., Phitochemistry, 1986, vol. 25, no. 2, pp. 471–474.

    Article  Google Scholar 

  12. Engels, B., Heining, U., Grothe, T., Stadler, M., and Jennewein, S., J. Biol. Chem., 2011, vol. 286, no. 9, pp. 6871–6878.

  13. Lackner, G., Bohnert, M., Wick, J., and Hoffmeister, D., Chem. Biol., 2013, vol. 20, no. 9, pp. 1101–1106.

    Article  CAS  PubMed  Google Scholar 

  14. Kobori, H., Sekiya, A., Suzuki, T., Choi, J., Hirai, H., and Kawagishi, H., J. Nat. Prod., 2015, vol. 78, no. 1, pp. 163–167.

    Article  CAS  PubMed  Google Scholar 

  15. Bohnert, M., Miethbauer, S., Dahse, H.M., Ziemen, J., Nett, M., and Hoffmeister, D., Bioorg. Med. Chem. Lett., 2011, vol. 27, no. 7, pp. 2003–2006.

    Article  CAS  Google Scholar 

  16. Nutzmann, H-W., Schroeckh, V., Horn, F., Dahse, H-M., Brakhage, A.A., and Hoffmeister, D., Phytochemistry, 2014, vol. 105, no. 9, pp. 101–108.

    Article  CAS  PubMed  Google Scholar 

  17. Li, Zh., Wang, Y., Jiang, B., Li, W., Zheng, L., Yang, X., Bao, Y., Luguo, SunL., Yanxin, HuangY., and Li, Y., J. Ethnopharmacol., 2016, vol. 184, no. 3, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  18. Peipp, H. and Sonnenbichler, J., Biol. Chem. Hoppe-Seyler, 1992, vol. 373, no. 8, pp. 675–683.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to K. Korhonen (Finnish Forest Research Institute) for active participation in conducting research on the species identification of fungi of the genus Armillaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kozlovsky.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelifonova, V.P., Antipova, T.V., Litvinova, E.A. et al. Biosynthesis of Protoilludene Sesquiterpene Aryl Esters by Siberian Strains of the Genus Armillaria Fungi. Appl Biochem Microbiol 55, 277–283 (2019). https://doi.org/10.1134/S0003683819030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819030153

Keywords:

Navigation