Skip to main content
Log in

1,3-Diaminopropane and Spermidine Upregulate Lovastatin Production and Expression of Lovastatin Biosynthetic Genes in Aspergillus terreus via LaeA Regulation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The filamentous fungus Aspergillus terreus is the main industrial producer of lovastatin, a cholesterol-lowering drug that is also used as a semiproduct for simvastatin production. The exogenous addition of such polyamines as 1,3-diaminopropane or spermidine during the fermentation of wild-type A. terreus ATCC 20542 and overproducing A. terreus 43-16 strains results in a 20−45% increase in lovastatin production. In the case of strain 43-16, the maximum production level (10 g/L) was observed three days earlier than in the control variant. During this fermentation period, the expression level of genes belonging to the lovastatin biosynthetic cluster and the laeA gene (a global regulator of a fungal secondary metabolism) are increased, but the expression patterns for genes of the polyamine metabolic pathway were similar for both strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig 6.

Similar content being viewed by others

REFERENCES

  1. Barrios- González, J. and Miranda, R.U., Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 4, pp. 869–883.

  2. RF Patent no. 2261901, 2005.

  3. Zhgun, A.A., Dumina, M.V., Voinova, T.M., Dzhavakhiya, V.V., and El’darov, M.A., Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 188–197.

    Article  CAS  Google Scholar 

  4. Demain, A.L., in Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Fungal Biology, Martin, J.F., Garcia-Estrada, C., and Zeilinger, S., Eds., New York: Springer, 2014.

    Google Scholar 

  5. Macheleidt, J., Mattern, D.J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., Valiante, V., and Brakhage, A.A., Ann. Rev. Genet., 2016, vol. 23, no. 50, pp. 371–392.

    Article  CAS  Google Scholar 

  6. Martín, J.F., J. Ind. Microbiol. Biotechnol., 2017, vol. 44, nos. 4–5, pp. 525–535.

    Article  CAS  PubMed  Google Scholar 

  7. Martín, J., García-Estrada, C., Kosalková, K., Ullán, R.V., Albillos, S.M., and Martín, J.F., Fungal Genet. Biol., 2012, vol. 49, no. 12, pp. 1004–1013.

    Article  CAS  PubMed  Google Scholar 

  8. García-Estrada, C., Barreiro, C., Jami, M.S., Martín-González, J., and Martín, J.F., J. Proteomics, 2013, vol. 85, pp. 129–159.

    Article  CAS  PubMed  Google Scholar 

  9. Martín, J., García-Estrada, C., Rumbero, A., Recio, E., Albillos, S.M., Ullán, R.V., and Martín, J.F., Appl. Environ. Microbiol., 2011, vol. 77, no. 16, pp. 5688–5696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhgun, A.A., Ivanova, M.A., Domracheva, A.G., Novak, M.I., El’darov, M.A., Skryabin, K.G., and Bartashevich, Yu.E., Appl. Biochem. Microbiol., 2008, vol. 46, no. 6, pp. 600–607.

    Article  CAS  Google Scholar 

  11. El'darov, M.A., Sklyarenko, A.V., Dumina, M.V., Medvedeva, N.V., Zhgun, A.A., Satarova, D.E., Sidorenko, A.I., Epremyan, A.S., and Yarotskii, S.V., Biomed. Khim., 2015, vol. 61, no. 5, pp. 5–12.

    Google Scholar 

  12. Majumdar, R., Lebar, M., Mack, B., Minocha, R., Minocha, S., Carter-Wientjes, C., Sickler, C., Rajasekaran, K., and Cary, J.W., Front. Plant Sci., 2018, vol. 9, p. 317.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dumina, M.V., Zhgun, A.A., Kerpichnikov, I.V., Domracheva, A.G., Novak, M.I., Valiakhmetov, A.Ya., Knorre, D.A., Severin, F.F., El’darov, M.A., and Bartoshevich, Yu.E., Appl. Biochem. Microbiol., 2013, vol. 49, no. 4, pp. 368–377.

    Article  CAS  Google Scholar 

  14. Dumina, M.V., Zhgun, A.A., Novak, M.I., Domratcheva, A.G., Petukhov, D.V., Dzhavakhiya, V.V., Eldarov, M.A., and Bartoshevitch, Iu.E., J. Microbiol. Biotechnol., 2014, vol. 30, no. 11, pp. 2933–2941.

    Article  CAS  Google Scholar 

  15. Lu, G. and Moriyama, E.N., Brief. Bioinform., 2004, vol. 5, no. 4, pp. 378–388.

    Article  CAS  PubMed  Google Scholar 

  16. Zhgun, A.A., Avdanina, D.A., Potapov, M.P., Stepanov, M.G., and Shitov, M.V., Znan. Misel J., 2018, vol. 20, no. 1, pp. 6–13.

    Google Scholar 

  17. Savitha, J., Bhargavi, S.D., and Praveen, V.K., Genome Announc., 2016, vol. 4, no. 3, p. e00491-16.

    PubMed  PubMed Central  Google Scholar 

  18. Nijland, J.G., Ebbendorf, B., Woszczynska, M., Boer, R., Bovenberg, R.A., and Driessen, A.J., Appl. Environ. Microbiol., 2010, vol. 76, no. 21, pp. 7109–7115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barredo, J.L., Díez, B., Alvarez, E., and Martín, J.F., Curr. Genet., 1989, vol. 16, nos 5-6, pp. 453–459.

    Article  CAS  PubMed  Google Scholar 

  20. Fierro, F., Barredo, J.L., Díez, B., Gutierrez, S., Fernández, F.J., and Martín, J.F., Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, no. 13, pp. 6200–6204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Newbert, R.W., Barton, B., Greaves, P., Harper, J., and Turner, G., J. Ind. Microbiol. Biotechnol., 1997, vol. 19, no. 1, pp. 18–27.

    Article  CAS  PubMed  Google Scholar 

  22. Harris, D.M., van der Krogt, Z.A., Klaassen, P., Raamsdonk, L.M., Hage, S., Berg, M.A., Bovenberg, R.A., Pronk, J.T., and Daran, J.M., BMC Genomics, 2009, vol. 10, no. 75, pp. 1–20.

    Article  CAS  Google Scholar 

  23. Salo, O.V., Ries, M., Medema, M.H., Lankhorst, P.P., Vreeken, R.J., Bovenberg, R.A., and Driessen, A.J., BMC Genomics, 2015, vol. 16, no. 937, pp. 1–15.

    Article  CAS  Google Scholar 

  24. Dumina, M.V., Zhgun, A.A., Domracheva, A.G., Novak, M.I., and El’darov, M.A., Russ. J. Genet., 2012, vol. 48, no. 8, pp. 778–784.

    Article  CAS  Google Scholar 

  25. Zeng, G., Zhang, P., Zhang, Q., Zhao, H., Li, Z., Zhang, X., Wang, C., Yin, W.B., and Fang, W., PLoS Genet., 2018, vol. 14, no. 6. e1007472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhgun, A.A., Kalinin, S.G., Novak, M.I., Domracheva, A.G., Petukhov, D.V., Dzhavakhiya, V.V., El’darov, M.A., and Bartoshevich, Yu.E., Izv. Vuzov. Prikl. Khim. Biotekhn., 2015, vol. 14, no. 3, pp. 47–54.

    Google Scholar 

  27. Rodríguez Porcela, E.M., Casas Lópeza, J.L., Sánchez Péreza, J.A., Fernández Sevillaa, J.M., and Chistib, Y., Biochem. Eng. J., 2005, vol. 26, nos. 2–3, pp. 139–144.

    Article  CAS  Google Scholar 

  28. Bizukojc, M. and Ledakowicz, S., Adv. Biochem. Eng. Biotechnol., 2015, vol. 149, pp. 133–170.

    CAS  PubMed  Google Scholar 

  29. Xu, W., Chooi, Y.H., Choi, J.W., Li, S., Vederas, J.C., Da, Silva N.A., and Tang, Y., Angew Chem. Int. Ed. Engl., 2013, vol. 52, no. 25, pp. 6472–6475.

    Article  CAS  PubMed  Google Scholar 

  30. Perez-Leal, O. and Merali, S., Amino Acids, 2012, vol. 42, nos. 2–3, pp. 611–617.

  31. Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., and Ralser, M., J. Mol. Biol., 2015, vol. 427, no. 21, pp. 3389–3406.

    Article  CAS  PubMed  Google Scholar 

  32. Mandal, S., Mandal, A., Johansson, H.E., Orjalo, A.V., and Park, M.H., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 6, pp. 2169–2174.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bok, J.W. and Keller, N.P., Eukaryot. Cell, 2004, vol. 3, no. 2, pp. 527–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teresa, P., Armando, M., and Javier, B.-G., Int. J. Curr. Microbiol. App. Sci., 2015, vol. 4, no. 10, pp. 537–555.

    Google Scholar 

  35. Niu, J., Arentshorst, M., Nair, P.D., Dai, Z., Baker, S.E., Frisvad, J.C., Nielsen, K.F., Punt, P.J., and Ram, A.F., G3 (Bethesda), 2016, vol. 6, no. 1, pp. 193–204.

    Article  CAS  Google Scholar 

  36. Palonen, E.K., Raina, S., Brandt, A., Meriluoto, J., Keshavarz, T., and Soini, J.T., Microorganisms, 2017, vol. 5, no. 1, p. E12 (1-23).

  37. Sarikaya-Bayram, O., Palmer, J.M., Keller, N., Braus, G.H., and Bayram, O., Front. Microbiol., 2015, vol. 6, no. 1, pp. 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Valdés-Santiago, L. and Ruiz-Herrera, J., Polyamines in Fungi: Their Distribution, Metabolism, and Role in Cell Differentiation and Morphogenesis, Boca Raton, FL, U.S.A.: CRC Press, 2015.

    Book  Google Scholar 

  39. Casas Lópeza J.L, Sánchez Péreza, J.A., Fernández Sevillaa, J.M., Acién Fernándeza, F.G., Molina Grimaa, E., and Chistib, Y., Enzyme Microb. Technol., 2003, vol. 33, nos. 2–3, pp. 270–277.

    Article  CAS  Google Scholar 

  40. Vilches Ferrón, M.A., Casas López, J.L., Sánchez Pérez, J.A., Fernández Sevilla, J.M., and Chisti, Y., J. Microbiol. Biotechnol., 2005, vol. 21, no. 2, pp. 123–125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhgun.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhgun, A.A., Nuraeva, G.K., Dumina, M.V. et al. 1,3-Diaminopropane and Spermidine Upregulate Lovastatin Production and Expression of Lovastatin Biosynthetic Genes in Aspergillus terreus via LaeA Regulation. Appl Biochem Microbiol 55, 243–254 (2019). https://doi.org/10.1134/S0003683819020170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819020170

Keywords:

Navigation