Skip to main content
Log in

A Strain Rhodococcus wratislaviensis КТ112-7 as a Basis for Bioregeneration of PCB-Contaminated Metal/Carbon Catalyst

  • BIOLOGICALS USE
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A possibility of the bioregeneration of polychlorinated biphenyl-contaminated metal/carbon catalysts using aerobic bacteria as biological agents has been shown. Using the 5%-Pd/Sibunit catalyst contaminated by the products of the hydrodechlorinaton of the PCB commercial mixture of the Sovol brand and a strain of Rhodococcus wratislaviensis КТ112-7 it was proved that the application of the bacterial culture permits to rapidly clean the catalyst with the minimal technical and economic costs. It was established that the degree of the catalyst decontamination for 24 h with the help of the intact bacteria cells was equal to 99% (0.77 mg/mL). According to the gas-liquid chromatography, the R. wratislaviensis КТ112-7 strain decomposed all the components occurring on 5%-Pd/Sibunit after the reaction of PCB hydrodechlorination. The efficiency of the bacterial destruction made up 97% (0.76 mg/mL). The residual portion of contaminating compounds was adsorbed by the bacterial cells. Therefore, the R. wratislaviensis КТ112-7 strain can be used as a biological component in the systems for PCB-contaminated metal/carbon catalyst cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Treger, U., PCBs—resistant and very dangerous, Chem. J., 2013, no. 1, pp. 30–34.

  2. Erikson, M.D. and Kaley, IIR.G., Applications of polychlorinated biphenyls, Environ. Sci. Pollut. Res., 2011, vol. 18, no. 2, pp. 135–151. doi 11356-010-0392-110.1007/s

  3. Murugan, K. and Vasudevan, N., Intracellular toxicity by PCBs and role of VBNC bacterial strains in biodegradation, Ecotoxicol. Environ. Saf., 2018, vol. 157, 40–60. doi 10.1016/j.ecoenv.2018.03.014

    Article  PubMed  CAS  Google Scholar 

  4. Ross, G., The public health implications of polychlorinated biphenyls (PCBs) in the environment, Ecotoxicol. Environ. Saf., 2004, vol. 59, pp. 275–291. http://dx.doi. org/10.1016/j.ecoenv.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  5. Gorbunova, T.I., Pervova, M.G., Zabelina, O.N., Saloutin, V.I., and Chupakhin, O.N., Polychlorinated Biphenyls. Problems of Ecology, Analysis, and Chemical Disposal, Moscow: Krasand, 2011.

    Google Scholar 

  6. Zanaveskin, L.N. and Aver’yanov, V.A., Polychlorobiphenyls: problems of the pollution of the environment and technological neutralisation methods, Russ. Chem. Rev., 1998, vol. 67, no. 8, pp. 713–724. doi ABEH00041210.1070/RC1998v067n08

  7. Miheev, V.A., Pervova, M.G., Taran, O.P., et al., Nano Pd/Sibunit—effective catalysts for the process of hydrodechlorination chloroaromatics toxic products, Nanosyst. Nanomater. Nanotechnol., 2010, vol. 8, no. 4, pp. 799–811.

    Google Scholar 

  8. Sagdeev, K.A., Gallyamov, R.F., Sagdeev, A.A., and Gumerov, F.M., The study of regeneration aluminapalladium catalyst by the method of supercritical fluid extraction, Chem., Chem. Technol., 2014, vol. 57, no. 8, pp. 64–67.

    CAS  Google Scholar 

  9. Makarov, A.M., Regeneration of metal catalysts in industrial purification of gas emissions of enterprises, Fundam. Study, 2006, no. 8, p. 91.

  10. Kamener, E.A., Kravchenko, A.Z., Afanasyeva, T.S., Chebykin, V.V., and Kuznetsov, B.F., Method of regeneration of chemical sorbent-catalyst on the coal basis, RF Patent no. 2436629, 2011.

  11. Adebusoye, S.A., Ilori, M.O., Picardal, F.W., et al., Cometabolic degradation of polychlorinated biphenyls (PCBs) by axenic cultures of Ralstonia sp. strain SA-5 and Pseudomonas sp. strain SA-6 obtained from Nigerian contaminated soils, World J. Microbiol. Biotechnol., 2008, vol. 24, no. 1, pp. 61–68. doi 10.1007/s11274-007-9438-z

    Article  CAS  Google Scholar 

  12. Kolar, A.B., Hrsak, D., Fingler, S., et al., PCB-degrading potential of aerobic bacteria enriched from marine sediments, Int. Biodeterior. Biodegrad., 2007, vol. 60, pp. 16–24. doi 1016/j.ibiod.2006.11.004

  13. Kim, S. and Picardal, F.W., A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates, FEMS Microbiol. Lett., 2000, vol. 185, no. 2, pp. 225–229. doi 10.1016/S0378-1097(00)00091-4

    Article  PubMed  CAS  Google Scholar 

  14. Frame, G., Congener-specific PCB analysis, Anal. Chem., 1997, vol. 69, no. 15, pp. 468A–475A. doi 10.1021/ac971725x

    Article  CAS  Google Scholar 

  15. Egorova, D.O., Demakov, V.A., and Plotnikova, E.G., Destruction of mixture of tri-hexa-chlorinated biphenyls by Rhodococcus genus strains, Appl. Biochem. Microbiol., 2011, vol. 47, no. 6, pp. 599–606.

    Article  CAS  Google Scholar 

  16. Pieper, D.H., Aerobic degradation of polychlorinated biphenyls, Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 2, pp. 170–191. https://doi.org/.10.1007/s00253-004-1810-4

    Article  PubMed  CAS  Google Scholar 

  17. Hatamian-Zarmi, A., Shojaosadati, S.A., Vasheghani-Farahani, E., et al., Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils, Int. Biodeterior. Biodegrad., 2009, vol. 63, pp. 788–794. doi 10.1016/j.ibiod.2009.06.009

    Article  CAS  Google Scholar 

  18. Petric, I., Bru, D., Udikovic-Kolic, N., Hr"sak, D., et al., Evidence for shifts in the structure and abundance of the microbial community in a long-term PCB-contaminated soil under bioremediation, J. Hazard. Mater., 2011, vol. 195,pp. 254–260. doi 10.1016/ j.jhazmat.2011.08.036

    Article  PubMed  CAS  Google Scholar 

  19. Borja, J., Taleon, D.M., Auresenia, J., and Gallardo, S., Polychlorinated biphenyls and their biodegradation, Process Biochem., 2005, vol. 40, no. 6, pp. 1999–2013. doi 10.1016/j.procbio.2004.08.006

    Article  CAS  Google Scholar 

  20. Field, J.A. and Sierra-Alvarez, R., Microbial transformation and degradation of polychlorinated biphenyls, Environ. Pollut., 2008, vol. 155, pp. 1–12. doi 10.1016/ j.envpol.2007.10.016

    Article  PubMed  CAS  Google Scholar 

  21. Egorova, D.O., Korsakova, E.S., Demakov, V.A., and Plotnikova, E.G., Degradation of aromatic hydrocarbons by the Rhodococcus wratislaviensis KT112-7 isolated from waste products of a salt-mining plant, Appl. Biochem. Microbiol., 2013, vol. 49, no. 3, pp. 244–255. doi 10.7868/ S0555109913030070

    Article  CAS  Google Scholar 

  22. Egorova, D.O., Pervova, M.G., Demakov, V.A., and Plotnikova, E.G., Specific features of chlorinated biphenyl decomposition by Rhodococcus wratislaviensis strain KT112-7 under high salt conditions, Appl. Biochem. Microbiol., 2018, vol. 54, no. 3, pp. 252–261. doi 10.7868/S0555109918030042

    Article  CAS  Google Scholar 

  23. Mekhaev, A.V., Butin, F.N., Pervova, M.G., et al., Pd/Sibunit as efficient hydrogen transfer catalyst in hydrodechlorination of polychlorobiphenyls, Russ. J. Org. Chem., 2014, vol. 50, no. 6, pp. 900–901. doi 10.1134/S1070428014060244

    Article  CAS  Google Scholar 

  24. Zaitsev, G.M. and Karasevich, Yu.N., Preparatory metabolism of 4-chlorobenzoic acid in Arthrobacter globiformis, Microbiology, 1981,vol. 50,pp. 423–428.

    CAS  Google Scholar 

  25. Egorova, D.O., Demakov, V.A., and Plotnikova, E.G., Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains, J. Hazard. Mater., 2013, vol. 261, pp. 378–386. doi 10.1016/ j.jhazmat.2013.07.067

    Article  PubMed  CAS  Google Scholar 

  26. Papale, M., Giannarelli, S., Francesconi, S., et al., Enrichment, isolation and biodegradation potential of psychrotolerant polychlorinated-biphenyl degrading bacteria from the Kongsfjorden (Svalbard Islands, High Arctic Norway), Mar. Pollut. Bull., 2017, vol. 26, no. 2, pp. 849–859. doi 10.1016/j.marpolbul.2016.11.011

    Article  CAS  Google Scholar 

  27. Egorova, D.O., Gorbunova, T.I., Pervova, M.G., and Demakov, V.A., Bacterial degradation of a mixture obtained through the chemical modification of polychlorinated biphenyls by polyethylene glycols, Appl. Biochem. Microbiol., 2014, vol. 50, no. 7, pp. 722–729. doi 10.1134/ S0003683814070023

    Article  CAS  Google Scholar 

  28. Gorbunova, T.I., Pervova, M.G., Panyukova, A.A., et al., An interdisciplinary approach to the problem of neutralization of man-made polychlorinated biphenyls, Dokl. Chem., 2014, vol. 454, no. 2, pp. 19–24. doi 10.7868/S086956521404015X

    Article  CAS  Google Scholar 

  29. Kim, A.A., Djuraeva, G.T., Takhtobin, K.S., et al., Investigation of PCBs biodegradation by soil bacteria using tritium-labeled PCBs, J. Radioanal. Nucl. Chem., 2004, vol. 259, no. 2, pp. 301–304. doi 10.1023/ B:JRNC.0000017307.35460.b9

    Article  CAS  Google Scholar 

  30. Egorova, D.O. and Pervova, M.G., Application of natural strains-destructors in the degradation process of the chemical pollutants, Proc. Samara Sci. Center, Russ. Akad. Sci., 2013, vol. 14, no. 3 (4), pp. 1287–1290.

Download references

ACKNOWLEDGMENTS

The authors are acknowledged to M.G. Pervova, Cand. Chem. Sci. (the Postovskii Institute for Organic Synthesis, Russ. Acad. Sci., Ural Branch, Ekaterinburg, Russia), for the assistance in the gas chromatography procedures. The work was performed within the framework of the state task on the theme “Search and Selection of New Promising Microorganisms for Biotechnology Purposes. Creation of Immunochemical Diagnostic Systems” (State Registration no. 01201353246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Egorova.

Additional information

The article is published in the original.

Abbreviations—AMU, atomic mass unit; GC-FID, gas chromatography with flame ionization detector; GC-MS, gas chromatography–mass spectrometry; IUPAC, International Union of Pure and Applied Chemistry; OD, optical density; P mixture, mixture of compounds occurring on catalyst particles and resulted from reaction of Sovol hydrodechlorination; PCB, polychlorinated biphenyls.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, D.O., Demakov, V.A. A Strain Rhodococcus wratislaviensis КТ112-7 as a Basis for Bioregeneration of PCB-Contaminated Metal/Carbon Catalyst. Appl Biochem Microbiol 54, 876–885 (2018). https://doi.org/10.1134/S0003683818090119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818090119

Keywords:

Navigation