Skip to main content

Advertisement

Log in

Immunological Efficacy and Safety of Synthesized CpG Oligodeoxynucleotides

  • BIOLOGICAL PREPARATION TECHNOLOGY
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The technology for synthesis is described, and the adjuvant properties of CpG oligodeoxynucleotides (CpG-ODNs) are assessed. CpG-ODN sequences were generated according to the available sequences on an automatic synthesizer. The adjuvant activity was evaluated with CpG-ODNs in combination with a recombinant protective antigen and EA1, an S-layer protein of the anthrax agent. It was established that the use of the synthesized adjuvant CpG 2006, along with immunogenic antigens, leads to the development of long-term, high-level immunity in test animals. The synthetic CpG 2006 antigenic product was shown to have an advantage over alhydrogel in terms of adjuvant activity. Experiments on biomodels provided data confirming the absence of toxic and damaging effects of CpG-ODNs on cells and tissues of the macroorganism. Comparison of the cell-mediated immunity (content of CD4+ and CD8+) after immunization by the B. anthracis STI-1 strain or a recombinant anthrax vaccine prototype with CpG 2006 or alhydrogel as an adjuvant is evidence of the activation of the cellular component of the immune system in all of the compared groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Semenov, B.F., Zverev, V.V., and Khaitov, R.M., Vaccine prophylaxis in the 21st century: the present and the future, Immunologiya, 2009, vol. 30, no. 6, pp. 324–335.

    Google Scholar 

  2. Bode, C., Zhao, G., Steinhagen, F., et al., CpG DNA as a vaccine adjuvant, Expert Rev. Vaccines, 2011, vol. 10, no. 4, pp. 499–511. doi 10.1586/erv.10.174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zhu, Q., Egelston, C., Vivekanandhan, A., et al., Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 42, pp. 16 260–16 265. doi 10.1073/pnas.0805325105

    Article  Google Scholar 

  4. Vollmer, J., Weeratna, R., Payette, P., et al., Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities, Eur. J. Immunol., 2004, vol. 34, no. 1, pp. 251–262. doi 10.1002/eji.200324032

    Article  PubMed  CAS  Google Scholar 

  5. Gupta, K. and Cooper, C., A review of the role of CpG oligodeoxynucleotides as toll-like receptor 9 agonists in prophylactic and therapeutic vaccine development in infectious diseases, Drugs R. D., 2008, vol. 9, no. 3, pp. 137—145.

    Article  PubMed  CAS  Google Scholar 

  6. Jurk, M. and Vollmer, J., Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation, BioDrugs, 2007, vol. 21, no. 6, pp. 387–401. doi 10.2165/00063030-200721060-00006

    Article  PubMed  CAS  Google Scholar 

  7. Krieg, A., Development of TLR9 agonists for cancer therapy, J. Clin. Invest., 2007, vol. 117, no. 5, pp. 1184–1194. doi 10.1172/JCI31414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dorn, A. and Kippenberger, S., Clinical application of CpG-, non-CpG-, and antisense oligodeoxynucleotides as immunomodulators, Curr. Opin Mol. Ther., 2008, vol. 10, no. 1, pp. 10–20.

    PubMed  CAS  Google Scholar 

  9. Burke, B., Gomez-Roman, V., Lian, Y., et al., Neutralizing antibody responses to subtype B and C adjuvanted HIV envelope protein vaccination in rabbits, Virology, 2009, vol. 387, no. 1, pp. 147–156. doi 10.1016/j.virol.2009.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pashchenkov, M.V., Immunomodulators based on muramyl peptides and bacterial DNA: from experiment to clinical practice, Doctoral (Med.) Dissertation, Moscow: FGBU GNTs Institut immunologii, FMBA Rossii, 2013.

  11. Rynkiewicz, D., Rathkopf, M., Sim, I., et al., Marked enhancement of the immune response to BioThrax® (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers, Vaccine, 2011, vol. 29, pp. 6313–6320. doi 10.1016/j.vaccine.2011.05.047

    Article  PubMed  CAS  Google Scholar 

  12. Minang, J., Inglefield, J., Harris, A., et al., Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909), Vaccine, 2014, vol. 32, no. 50, pp. 6847–54. doi 10.1016/j.vaccine.2014.01.096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ali, R., Naqvi, R., Kumar, S., et al., Multiple antigen peptide containing B and T cell epitopes of F1 antigen of Yersinia pestis showed enhanced Th1 immune response in murine model, Scand. J. Immunol., 2013, vol. 77, no. 5, pp. 361–371. doi 10.1111/sji.12042

    Article  PubMed  CAS  Google Scholar 

  14. Amemiya, K., Meyers, J., Rogers, T., et al., CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague, Vaccine, 2009, vol. 27, pp. 2220–2229. doi 10.1016/j.vaccine.2009.02.016

    Article  PubMed  CAS  Google Scholar 

  15. Hickey, A., Lin, J., Kummer, L., et al., Intranasal prophylaxis with CpG oligodeoxynucleotide can protect against Yersinia pestis infection, Infect. Immun., 2013, vol. 81, no. 6, pp. 2123–32. doi 10.1128/IAI.00316-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mikshis, N.I., Semakova, A.P., Popova, P.Yu., et al., The prospect of using different adjuvants in combination with recombinant protective antigen of the anthrax microbe, Biotekhnologiya, 2014, vol. 6, pp. 36–42.

    Google Scholar 

  17. Mikshis, N.I., Goncharova, A.Yu., Popova, P.Yu., et al., A method for producing the protective antigen and the S-layer EA1 protein of an asporogenous recombinant strain from the B. anthracis asporogenous recombinant strain 55ΔTPA-1Spo, RF Patent no. 2 492 241, 2012.

  18. Tross, D., Effect of CpG oligonucleotides on vaccine-induced B cell memory, J. Immunol., 2008, vol. 181, no. 8, pp. 5785–5790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mikszta, J., Sullivan, V., Dean, C., et al., Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms, J. Infect Dis., 2005, vol. 191, no. 2, pp. 278–288. doi 10.1086/426865

    Article  PubMed  CAS  Google Scholar 

  20. Lymphocytes : A Practical Approach, Klaus, G.G.B., Ed., Oxford: IRL Press, 1987.

    Google Scholar 

  21. Korzhevskii, D.E. and Gilyarov, A.V., Osnovy gistologicheskoi tekhniki (Basics of Histological Techniques), Moscow: SpetsLit, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Kudriavtseva.

Additional information

Translated by M. Novikova

Abbreviations: LD50—dose lethal for 50% of test animals; PA—protective antigen; rPA—recombinant PA; CpG-ODN—cytosine-guanine-oligodeoxynucleotide; TLR—toll-like receptors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudriavtseva, O.M., Semakova, A.P., Mikshis, N.I. et al. Immunological Efficacy and Safety of Synthesized CpG Oligodeoxynucleotides. Appl Biochem Microbiol 54, 855–862 (2018). https://doi.org/10.1134/S0003683818090041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818090041

Keywords:

Navigation